Home
Class 11
MATHS
Prove that (sin alpha cos beta + cos alp...

Prove that `(sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ (\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2 + (\cos \alpha \cos \beta - \sin \alpha \sin \beta)^2 = 1, \] we will start by simplifying the left-hand side (LHS) using trigonometric identities. ### Step 1: Identify the terms We can identify the two terms in the LHS: 1. \( A = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) 2. \( B = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) ### Step 2: Recognize the sine and cosine of sum formulas We know from trigonometric identities that: - \( \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) - \( \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) Thus, we can rewrite \( A \) and \( B \) as: \[ A = \sin(\alpha + \beta) \] \[ B = \cos(\alpha + \beta) \] ### Step 3: Substitute back into the LHS Now substituting \( A \) and \( B \) into the LHS gives us: \[ LHS = (\sin(\alpha + \beta))^2 + (\cos(\alpha + \beta))^2 \] ### Step 4: Apply the Pythagorean identity Using the Pythagorean identity, we know that: \[ \sin^2 x + \cos^2 x = 1 \] Thus, we have: \[ LHS = 1 \] ### Conclusion We have shown that: \[ (\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2 + (\cos \alpha \cos \beta - \sin \alpha \sin \beta)^2 = 1 \] Therefore, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5(A)
  1. Simplify be reducing to a single term : (tan 69^(@) + tan 66^(@))/(1...

    Text Solution

    |

  2. Simplify be reducing to a single term : (tan alpha - tan ( alpha - b...

    Text Solution

    |

  3. Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha...

    Text Solution

    |

  4. sin (60^(@) + theta) - sin ( 60^(@) - theta ) = sin theta.

    Text Solution

    |

  5. Prove that sin(θ+30°)+cos(θ+60°)= cos θ.

    Text Solution

    |

  6. sin ( 240^(@) + theta) + cos (330^(@) + theta ) = 0

    Text Solution

    |

  7. sin (A - 45 ^(@) ) = (1)/( sqrt2) (sin A - cos A)

    Text Solution

    |

  8. Prove that :cos ((pi)/(3) + x) = ( cos x - sqrt3 sin x )/(2)

    Text Solution

    |

  9. Prove: tan (45^(@)+ theta ) = (1 + tan theta)/( 1- tan theta )

    Text Solution

    |

  10. Prove: tan (45 ^(@) - theta ) =(1 - tan theta)/( 1 + tan theta)

    Text Solution

    |

  11. (sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

    Text Solution

    |

  12. (sin ( theta -phi))/(sin theta sin phi) = cot phi - cot theta.

    Text Solution

    |

  13. Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C...

    Text Solution

    |

  14. Prove that: sin 105 ^(@) + cos 105 ^(@) = cos 45 ^(@)

    Text Solution

    |

  15. Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (a...

    Text Solution

    |

  16. Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (a...

    Text Solution

    |

  17. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  18. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  19. If A and B are acute angles, find (A+B) given sin A = (1)/(sqrt5) ,...

    Text Solution

    |

  20. If A and B are acute angles, find (A+B) given tan A = (5)/(6), tan ...

    Text Solution

    |