Home
Class 11
MATHS
Prove that sin(θ+30°)+cos(θ+60°)= cos θ....

Prove that sin(θ+30°)+cos(θ+60°)= cos θ.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ) = \cos \theta \), we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Write down the LHS We start with the expression: \[ \text{LHS} = \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ) \] ### Step 2: Apply the sine addition formula Using the sine addition formula, \( \sin(a + b) = \sin a \cos b + \cos a \sin b \), we can expand \( \sin(\theta + 30^\circ) \): \[ \sin(\theta + 30^\circ) = \sin \theta \cos 30^\circ + \cos \theta \sin 30^\circ \] Substituting the values of \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) and \( \sin 30^\circ = \frac{1}{2} \): \[ \sin(\theta + 30^\circ) = \sin \theta \cdot \frac{\sqrt{3}}{2} + \cos \theta \cdot \frac{1}{2} \] ### Step 3: Apply the cosine addition formula Next, we expand \( \cos(\theta + 60^\circ) \) using the cosine addition formula, \( \cos(a + b) = \cos a \cos b - \sin a \sin b \): \[ \cos(\theta + 60^\circ) = \cos \theta \cos 60^\circ - \sin \theta \sin 60^\circ \] Substituting the values of \( \cos 60^\circ = \frac{1}{2} \) and \( \sin 60^\circ = \frac{\sqrt{3}}{2} \): \[ \cos(\theta + 60^\circ) = \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \] ### Step 4: Combine the results Now we can combine the results from Steps 2 and 3: \[ \text{LHS} = \left( \sin \theta \cdot \frac{\sqrt{3}}{2} + \cos \theta \cdot \frac{1}{2} \right) + \left( \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \right) \] This simplifies to: \[ \text{LHS} = \sin \theta \cdot \frac{\sqrt{3}}{2} + \cos \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \] The \( \sin \theta \cdot \frac{\sqrt{3}}{2} \) terms cancel out: \[ \text{LHS} = \cos \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{1}{2} = \cos \theta \] ### Step 5: Conclusion Thus, we have shown that: \[ \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ) = \cos \theta \] Therefore, we can conclude: \[ \text{LHS} = \text{RHS} \] Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that;- sin^6θ+cos ^6θ=1−3sin^2θcos ^2θ

Prove: sin^2θ + cos^2θ =1

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ

Prove that (sec^ 2θ−1)(cosec^ 2θ−1)=1

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5(A)
  1. Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha...

    Text Solution

    |

  2. sin (60^(@) + theta) - sin ( 60^(@) - theta ) = sin theta.

    Text Solution

    |

  3. Prove that sin(θ+30°)+cos(θ+60°)= cos θ.

    Text Solution

    |

  4. sin ( 240^(@) + theta) + cos (330^(@) + theta ) = 0

    Text Solution

    |

  5. sin (A - 45 ^(@) ) = (1)/( sqrt2) (sin A - cos A)

    Text Solution

    |

  6. Prove that :cos ((pi)/(3) + x) = ( cos x - sqrt3 sin x )/(2)

    Text Solution

    |

  7. Prove: tan (45^(@)+ theta ) = (1 + tan theta)/( 1- tan theta )

    Text Solution

    |

  8. Prove: tan (45 ^(@) - theta ) =(1 - tan theta)/( 1 + tan theta)

    Text Solution

    |

  9. (sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

    Text Solution

    |

  10. (sin ( theta -phi))/(sin theta sin phi) = cot phi - cot theta.

    Text Solution

    |

  11. Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C...

    Text Solution

    |

  12. Prove that: sin 105 ^(@) + cos 105 ^(@) = cos 45 ^(@)

    Text Solution

    |

  13. Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (a...

    Text Solution

    |

  14. Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (a...

    Text Solution

    |

  15. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  16. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  17. If A and B are acute angles, find (A+B) given sin A = (1)/(sqrt5) ,...

    Text Solution

    |

  18. If A and B are acute angles, find (A+B) given tan A = (5)/(6), tan ...

    Text Solution

    |

  19. Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what i...

    Text Solution

    |

  20. In the Delta ABC the foot of the perpendicular from A to BC is D. Give...

    Text Solution

    |