Home
Class 11
MATHS
If A +B = 45 ^(@), show that tan A + tan...

If `A +B = 45 ^(@),` show that `tan A + tan B + tan A tan B =1.` Hence or otherwise, express `tan 22 ^(@) 30'` in surd form.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first prove that if \( A + B = 45^\circ \), then \( \tan A + \tan B + \tan A \tan B = 1 \). Then, we will express \( \tan 22^\circ 30' \) in surd form. ### Step 1: Start with the given equation We are given that: \[ A + B = 45^\circ \] ### Step 2: Apply the tangent function Taking the tangent of both sides, we have: \[ \tan(A + B) = \tan(45^\circ) \] Since \( \tan(45^\circ) = 1 \), we can write: \[ \tan(A + B) = 1 \] ### Step 3: Use the tangent addition formula Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] We can set this equal to 1: \[ \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1 \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ \tan A + \tan B = 1 - \tan A \tan B \] ### Step 5: Rearranging the equation Rearranging the equation: \[ \tan A + \tan B + \tan A \tan B = 1 \] ### Conclusion of the proof Thus, we have shown that: \[ \tan A + \tan B + \tan A \tan B = 1 \] --- ### Step 6: Express \( \tan 22^\circ 30' \) in surd form Now we need to express \( \tan 22^\circ 30' \) in surd form. We can convert \( 22^\circ 30' \) into decimal degrees: \[ 22^\circ 30' = 22.5^\circ \] Let \( \theta = 22.5^\circ \). Then \( 2\theta = 45^\circ \). ### Step 7: Use the double angle formula for tangent Using the double angle formula: \[ \tan(2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta} \] Since \( \tan(45^\circ) = 1 \), we have: \[ \frac{2\tan \theta}{1 - \tan^2 \theta} = 1 \] ### Step 8: Cross-multiply and rearrange Cross-multiplying gives: \[ 2\tan \theta = 1 - \tan^2 \theta \] Rearranging this results in: \[ \tan^2 \theta + 2\tan \theta - 1 = 0 \] ### Step 9: Solve the quadratic equation Using the quadratic formula \( \tan \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 2, c = -1 \): \[ \tan \theta = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ = \frac{-2 \pm \sqrt{4 + 4}}{2} \] \[ = \frac{-2 \pm \sqrt{8}}{2} \] \[ = \frac{-2 \pm 2\sqrt{2}}{2} \] \[ = -1 \pm \sqrt{2} \] ### Step 10: Choose the appropriate solution Since \( \theta = 22.5^\circ \) is in the first quadrant, we take the positive root: \[ \tan 22.5^\circ = \sqrt{2} - 1 \] ### Final Answer Thus, we express \( \tan 22^\circ 30' \) in surd form as: \[ \tan 22^\circ 30' = \sqrt{2} - 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If A +B = 225 ^(@), prove that tan A + tan B =1- tan A tan B

If A + B = (pi)/(4) , then prove that (1 + tan A) (1 + tan B) = 2

Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B tan C.

If A + B + C = pi , prove that tan3A + tan3B + tan3C = tan3A*tan3B*tan3C

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then

If A =30^(@) ,then show that : tan2A=(2tanA)/(1-tan^(2)A)

If A+B=45^(@) , then (1+ tan A)(1+ tan B) =__________

Prove that : (cot A + tan B)/ (cot B + tan A) = cot A tan B

Show that tan48^(@) tan 23^(@) tan 42^(@) tan 67^(@) =1 .

If A +B+C= pi and /_C is obtuse then tan A. tan B is

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5(A)
  1. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  2. If A and B are acute angles, find (A+B) given sin A = (1)/(sqrt5) ,...

    Text Solution

    |

  3. If A and B are acute angles, find (A+B) given tan A = (5)/(6), tan ...

    Text Solution

    |

  4. Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what i...

    Text Solution

    |

  5. In the Delta ABC the foot of the perpendicular from A to BC is D. Give...

    Text Solution

    |

  6. Given that tan (A+ B) =1 and tan (A-B) = 1/7, find without using tab...

    Text Solution

    |

  7. If tan (A +B) = x and tan B = 1/2 prove that tan A = (2 x -1)/(x +2) ...

    Text Solution

    |

  8. If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + be...

    Text Solution

    |

  9. Prove that 1 + tan 2 theta tan theta = sec 2 theta .

    Text Solution

    |

  10. Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(...

    Text Solution

    |

  11. ( cos 17^(@) + sin 17^(@))/( cos 17^(@) - sin 17^(@)) = tan 62^(@)

    Text Solution

    |

  12. tan 3A - tan 2 A - tan A = tan 3 A tan 2 A tan A.

    Text Solution

    |

  13. tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

    Text Solution

    |

  14. Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (...

    Text Solution

    |

  15. If sin (theta + alpha ) = cos ( theta + alpha), prove that tan theta ...

    Text Solution

    |

  16. Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B ...

    Text Solution

    |

  17. If A +B = 45 ^(@), show that tan A + tan B + tan A tan B =1. Hence or ...

    Text Solution

    |

  18. Use the expansion of tan (A-B) to find tan 15 ^(@) without the use o...

    Text Solution

    |

  19. Prove that (2 tan A) /(1+ tan ^(2) A) = sin 2 A.

    Text Solution

    |

  20. If A +B = 225 ^(@), prove that tan A + tan B =1- tan A tan B

    Text Solution

    |