Home
Class 11
MATHS
Use the expansion of tan (A-B) to find ...

Use the expansion of `tan (A-B) ` to find `tan 15 ^(@) ` without the use of tables, leaving your answer in surd form with an integral denominator.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan 15^\circ \) using the expansion of \( \tan(A - B) \), we can follow these steps: ### Step 1: Identify \( A \) and \( B \) We can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Thus, we have: - \( A = 45^\circ \) - \( B = 30^\circ \) ### Step 2: Use the formula for \( \tan(A - B) \) The formula for \( \tan(A - B) \) is given by: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Substituting \( A \) and \( B \): \[ \tan 15^\circ = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] ### Step 3: Substitute known values We know: - \( \tan 45^\circ = 1 \) - \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) Substituting these values into the formula: \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} \] ### Step 4: Simplify the numerator and denominator The numerator becomes: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] The denominator becomes: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}} \] Putting it all together: \[ \tan 15^\circ = \frac{\frac{\sqrt{3} - 1}{\sqrt{3}}}{\frac{\sqrt{3} + 1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 5: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \( \sqrt{3} - 1 \): \[ \tan 15^\circ = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} \] ### Step 6: Simplify the expression The denominator simplifies using the difference of squares: \[ (\sqrt{3})^2 - (1)^2 = 3 - 1 = 2 \] The numerator expands to: \[ (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Thus, we have: \[ \tan 15^\circ = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] ### Final Answer Therefore, the value of \( \tan 15^\circ \) is: \[ \tan 15^\circ = 2 - \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Use the information given in the figure to find area of the unshaded region. Give your answer in terms of pi.

Given that tan (A+ B) =1 and tan (A-B) = 1/7, find without using tables the values of tan A and tan B.

Given that cos ""(A)/(2) = (12)/(13), calculate without the use of tubles, the values of sin A , cos A and tan A.

A lady uses + 1.5 D glasses to have normal vision from 25 cm onwards. She uses a 20 D lens as a simple microscope to see an object. Find the maximum magnifying power if she uses the microscope (a) together with her glass (b) without the glass. Do the answers suggest that an object can be more clearly seen through a microscope without using the correcting glasses?

Use the letters only written in the Periodic Table below to answer the question : Which element shown forms ions with a single negative charge.

Use tables to find cosine of : 9^(@) 23 + 15^(@) 54

Using the formula cos (A+B) = cosA cosB -sin A sin B . find the value of sin 15^(@) .

If A +B = 45 ^(@), show that tan A + tan B + tan A tan B =1. Hence or otherwise, express tan 22 ^(@) 30' in surd form.

Without using tables, give the value of the following : "sec"(15pi)/(4)

Use tables to find the acute angle 0, if the value of tan 0 is : 0.4741

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5(A)
  1. Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alph...

    Text Solution

    |

  2. If A and B are acute angles, find (A+B) given sin A = (1)/(sqrt5) ,...

    Text Solution

    |

  3. If A and B are acute angles, find (A+B) given tan A = (5)/(6), tan ...

    Text Solution

    |

  4. Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what i...

    Text Solution

    |

  5. In the Delta ABC the foot of the perpendicular from A to BC is D. Give...

    Text Solution

    |

  6. Given that tan (A+ B) =1 and tan (A-B) = 1/7, find without using tab...

    Text Solution

    |

  7. If tan (A +B) = x and tan B = 1/2 prove that tan A = (2 x -1)/(x +2) ...

    Text Solution

    |

  8. If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + be...

    Text Solution

    |

  9. Prove that 1 + tan 2 theta tan theta = sec 2 theta .

    Text Solution

    |

  10. Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(...

    Text Solution

    |

  11. ( cos 17^(@) + sin 17^(@))/( cos 17^(@) - sin 17^(@)) = tan 62^(@)

    Text Solution

    |

  12. tan 3A - tan 2 A - tan A = tan 3 A tan 2 A tan A.

    Text Solution

    |

  13. tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

    Text Solution

    |

  14. Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (...

    Text Solution

    |

  15. If sin (theta + alpha ) = cos ( theta + alpha), prove that tan theta ...

    Text Solution

    |

  16. Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B ...

    Text Solution

    |

  17. If A +B = 45 ^(@), show that tan A + tan B + tan A tan B =1. Hence or ...

    Text Solution

    |

  18. Use the expansion of tan (A-B) to find tan 15 ^(@) without the use o...

    Text Solution

    |

  19. Prove that (2 tan A) /(1+ tan ^(2) A) = sin 2 A.

    Text Solution

    |

  20. If A +B = 225 ^(@), prove that tan A + tan B =1- tan A tan B

    Text Solution

    |