Home
Class 11
MATHS
Evaluate : 1-2 sin ^(2) 22.5 ^(@)...

Evaluate :
`1-2 sin ^(2) 22.5 ^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 1 - 2 \sin^2(22.5^\circ) \), we can use the double angle identity for cosine. The identity states that: \[ \cos(2a) = 1 - 2 \sin^2(a) \] ### Step-by-Step Solution: 1. **Identify the angle**: In our case, \( a = 22.5^\circ \). 2. **Apply the double angle identity**: Using the identity, we can rewrite the expression: \[ 1 - 2 \sin^2(22.5^\circ) = \cos(2 \times 22.5^\circ) \] 3. **Calculate the angle**: Now calculate \( 2 \times 22.5^\circ \): \[ 2 \times 22.5^\circ = 45^\circ \] 4. **Evaluate cosine**: Now we need to find \( \cos(45^\circ) \): \[ \cos(45^\circ) = \frac{1}{\sqrt{2}} \] 5. **Final result**: Therefore, we can conclude that: \[ 1 - 2 \sin^2(22.5^\circ) = \frac{1}{\sqrt{2}} \] ### Final Answer: \[ \frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1-2sin^(2)30^(@)) .

Evaluate: sin(2\ sin^(-1)0. 6)

Evaluate : (2 tan 22 (1^(@))/( 2 ))/(1 - tan ^(2) 22 (1^(@))/( 2))

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3)/2)]

Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

Evaluate : sqrt((14.4)/(22.5))

Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] [{:(,4,5),(,5,4):}]

If sin A= cos A, then evaluate tan A+ sin^(2) A+1 .

Evaluate: sin [2cos^(-1) ((-3)/(5))]