Home
Class 11
MATHS
Evaluate : 2 cos ^(2) 157.5^(@) -1...

Evaluate :
`2 cos ^(2) 157.5^(@) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2 \cos^2(157.5^\circ) - 1 \), we can follow these steps: ### Step 1: Rewrite the angle We can express \( 157.5^\circ \) in terms of a related angle in the first quadrant. We know that: \[ 157.5^\circ = 180^\circ - 22.5^\circ \] Thus, we can rewrite the cosine function: \[ \cos(157.5^\circ) = \cos(180^\circ - 22.5^\circ) = -\cos(22.5^\circ) \] ### Step 2: Substitute into the expression Now we substitute this back into our original expression: \[ 2 \cos^2(157.5^\circ) - 1 = 2 (-\cos(22.5^\circ))^2 - 1 \] This simplifies to: \[ 2 \cos^2(22.5^\circ) - 1 \] ### Step 3: Use the double angle formula We can use the double angle formula for cosine, which states that: \[ \cos(2\theta) = 2 \cos^2(\theta) - 1 \] In our case, let \( \theta = 22.5^\circ \): \[ 2 \cos^2(22.5^\circ) - 1 = \cos(2 \times 22.5^\circ) = \cos(45^\circ) \] ### Step 4: Evaluate \( \cos(45^\circ) \) We know that: \[ \cos(45^\circ) = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of \( 2 \cos^2(157.5^\circ) - 1 \) is: \[ \frac{1}{\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Evaluate: cos (2 cos ^(-1) x +sin ^(-1) x ) at x = (1)/(5).

Evaluate : cos(2cos^(-1)x+sin^(-1)x) a t x=1/5

Evaluate : cos(2cos^(-1)x+sin^(-1)x)a tx=1/5

Evaluate: sin [2cos^(-1) ((-3)/(5))]

Evaluate sin(1/2cos^(-1)(4/5))

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

Evaluate : tan^(-1){2cos(2sin^(-1)""(1)/2)}

Evaluate : int(1)/(x^(2)"cos"^(2)((1)/(x)))dx

Evaluate: int1/(sinx(2cos^2x-1)dx