Home
Class 11
MATHS
Find the values of sin 2 theta, cos 2 th...

Find the values of `sin 2 theta, cos 2 theta, and tan 2 theta,` given :
(i) ` sin theta = (3)/(5) , theta ` in Quadrant I.
(ii) `sin theta = 3/5 , theta ` in Quadrant II.
(iii) ` sin theta = - (1)/(2), theta ` in Quadrant IV.
(iv) `tan theta =- (1)/(5) , theta `in Quadrant II.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the values of \( \sin 2\theta \), \( \cos 2\theta \), and \( \tan 2\theta \) for the given cases, we will follow a systematic approach for each part. ### Part (i): Given \( \sin \theta = \frac{3}{5} \), \( \theta \) in Quadrant I 1. **Find \( \cos \theta \)**: - Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \cos \theta = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad (\text{positive in Quadrant I}) \] 2. **Find \( \tan \theta \)**: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] 3. **Calculate \( \sin 2\theta \)**: \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \] 4. **Calculate \( \cos 2\theta \)**: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \] 5. **Calculate \( \tan 2\theta \)**: \[ \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7} \] ### Summary for Part (i): - \( \sin 2\theta = \frac{24}{25} \) - \( \cos 2\theta = \frac{7}{25} \) - \( \tan 2\theta = \frac{24}{7} \) --- ### Part (ii): Given \( \sin \theta = \frac{3}{5} \), \( \theta \) in Quadrant II 1. **Find \( \cos \theta \)**: - \( \cos \theta = -\sqrt{1 - \sin^2 \theta} = -\sqrt{1 - \left(\frac{3}{5}\right)^2} = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \) 2. **Find \( \tan \theta \)**: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] 3. **Calculate \( \sin 2\theta \)**: \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \cdot \frac{3}{5} \cdot -\frac{4}{5} = -\frac{24}{25} \] 4. **Calculate \( \cos 2\theta \)**: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(-\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \] 5. **Calculate \( \tan 2\theta \)**: \[ \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{-\frac{24}{25}}{\frac{7}{25}} = -\frac{24}{7} \] ### Summary for Part (ii): - \( \sin 2\theta = -\frac{24}{25} \) - \( \cos 2\theta = \frac{7}{25} \) - \( \tan 2\theta = -\frac{24}{7} \) --- ### Part (iii): Given \( \sin \theta = -\frac{1}{2} \), \( \theta \) in Quadrant IV 1. **Find \( \cos \theta \)**: - \( \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(-\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \) 2. **Calculate \( \sin 2\theta \)**: \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \cdot -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2} \] 3. **Calculate \( \cos 2\theta \)**: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(-\frac{1}{2}\right)^2 = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] 4. **Calculate \( \tan 2\theta \)**: \[ \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3} \] ### Summary for Part (iii): - \( \sin 2\theta = -\frac{\sqrt{3}}{2} \) - \( \cos 2\theta = \frac{1}{2} \) - \( \tan 2\theta = -\sqrt{3} \) --- ### Part (iv): Given \( \tan \theta = -\frac{1}{5} \), \( \theta \) in Quadrant II 1. **Find \( \sin \theta \) and \( \cos \theta \)**: - Let \( \tan \theta = \frac{\sin \theta}{\cos \theta} = -\frac{1}{5} \). - Using the identity \( 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta} \): \[ 1 + \left(-\frac{1}{5}\right)^2 = \frac{1}{\cos^2 \theta} \implies 1 + \frac{1}{25} = \frac{1}{\cos^2 \theta} \implies \frac{26}{25} = \frac{1}{\cos^2 \theta} \implies \cos^2 \theta = \frac{25}{26} \] \[ \cos \theta = -\sqrt{\frac{25}{26}} = -\frac{5}{\sqrt{26}} \quad (\text{negative in Quadrant II}) \] \[ \sin \theta = \tan \theta \cdot \cos \theta = -\frac{1}{5} \cdot -\frac{5}{\sqrt{26}} = \frac{1}{\sqrt{26}} \] 2. **Calculate \( \sin 2\theta \)**: \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \cdot \frac{1}{\sqrt{26}} \cdot -\frac{5}{\sqrt{26}} = -\frac{10}{26} = -\frac{5}{13} \] 3. **Calculate \( \cos 2\theta \)**: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(-\frac{5}{\sqrt{26}}\right)^2 - \left(\frac{1}{\sqrt{26}}\right)^2 = \frac{25}{26} - \frac{1}{26} = \frac{24}{26} = \frac{12}{13} \] 4. **Calculate \( \tan 2\theta \)**: \[ \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{-\frac{5}{13}}{\frac{12}{13}} = -\frac{5}{12} \] ### Summary for Part (iv): - \( \sin 2\theta = -\frac{5}{13} \) - \( \cos 2\theta = \frac{12}{13} \) - \( \tan 2\theta = -\frac{5}{12} \) ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find sin theta and tan theta if cos theta =-3/5 and theta lies in the third quadrant.

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

Prove that cos theta (tan theta +2) (2tan theta +1) = 2 sec theta + 5 sin theta

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

If 3 sin theta+5 cos theta = 5 , show that: 5 sin theta - 3 cos theta = +-3

If theta lies in the first quadrant and 5 tan theta = 4 , " then " (5 sin theta - 3 cos theta )/( sin theta + 2 cos theta )=

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5 (C )
  1. Evaluate : (2 tan 22 (1^(@))/( 2 ))/(1 - tan ^(2) 22 (1^(@))/( 2))

    Text Solution

    |

  2. Evaluate : 8 cos ^(3) ""(pi)/(9)- 6cos ""(pi)/(9)

    Text Solution

    |

  3. Find the values of sin 2 theta, cos 2 theta, and tan 2 theta, given : ...

    Text Solution

    |

  4. ABC is an acute-angled triangle incribed in a circle of radius 5 cm an...

    Text Solution

    |

  5. Derive function of 120^(@) from functions of 60^(@) and check by usi...

    Text Solution

    |

  6. If sin theta =a and sin 2 theta = b, find an expression for cos theta...

    Text Solution

    |

  7. Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and ta...

    Text Solution

    |

  8. If A is an obtuse angle whose sine is (5)/(13) and B is an acute ang...

    Text Solution

    |

  9. Express cos 6 alpha in terms of cos 3 alpha .

    Text Solution

    |

  10. sin 100 in terms of functions of 5 theta ,

    Text Solution

    |

  11. write tan 8 alpha in temrs of tan 4 alpha .

    Text Solution

    |

  12. cos 2 theta in terms of cos 4 theta,

    Text Solution

    |

  13. tan 4 phi in terms of cos 8phi,

    Text Solution

    |

  14. Express sin "" (5pi)/(2) in terms of cos 5pi ,

    Text Solution

    |

  15. cos 20 theta in terms of sin 5 theta .

    Text Solution

    |

  16. Using the half angle formulas, find the exact value of (i) sin 15 ^(@)...

    Text Solution

    |

  17. In the triangle ABC , in which C is the right angle, prove that : s...

    Text Solution

    |

  18. If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ...

    Text Solution

    |

  19. Given that cos ""(A)/(2) = (12)/(13), calculate without the use of tu...

    Text Solution

    |

  20. Given that tan x = (12)/(5), cos y = (-3)/(5), and the angles x and y ...

    Text Solution

    |