Home
Class 11
MATHS
If A is an obtuse angle whose sine is (5...

If A is an obtuse angle whose sine is `(5)/(13) and B ` is an acute angle whose tangent is `(3)/(4),` without using tables find the values of
(a) `sin 2B,`
(b)` tan (A-B).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \sin 2B \) and \( \tan(A - B) \) given that \( \sin A = \frac{5}{13} \) (where \( A \) is an obtuse angle) and \( \tan B = \frac{3}{4} \) (where \( B \) is an acute angle). ### Step 1: Find \( \cos A \) Since \( A \) is an obtuse angle, we can find \( \cos A \) using the identity: \[ \cos^2 A + \sin^2 A = 1 \] Substituting \( \sin A = \frac{5}{13} \): \[ \cos^2 A + \left(\frac{5}{13}\right)^2 = 1 \] Calculating \( \left(\frac{5}{13}\right)^2 \): \[ \cos^2 A + \frac{25}{169} = 1 \] Now, subtract \( \frac{25}{169} \) from 1: \[ \cos^2 A = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root: \[ \cos A = -\sqrt{\frac{144}{169}} = -\frac{12}{13} \] (The negative sign is because \( A \) is obtuse.) ### Step 2: Find \( \sin 2B \) Using the double angle formula for sine: \[ \sin 2B = \frac{2 \tan B}{1 + \tan^2 B} \] Substituting \( \tan B = \frac{3}{4} \): \[ \sin 2B = \frac{2 \cdot \frac{3}{4}}{1 + \left(\frac{3}{4}\right)^2} \] Calculating \( \left(\frac{3}{4}\right)^2 \): \[ \sin 2B = \frac{\frac{6}{4}}{1 + \frac{9}{16}} = \frac{\frac{6}{4}}{\frac{16 + 9}{16}} = \frac{\frac{6}{4}}{\frac{25}{16}} \] Now, multiply by the reciprocal: \[ \sin 2B = \frac{6}{4} \cdot \frac{16}{25} = \frac{96}{100} = \frac{24}{25} \] ### Step 3: Find \( \tan A \) Using the definition of tangent: \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12} \] ### Step 4: Find \( \tan(A - B) \) Using the formula for tangent of the difference of angles: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Substituting \( \tan A = -\frac{5}{12} \) and \( \tan B = \frac{3}{4} \): \[ \tan(A - B) = \frac{-\frac{5}{12} - \frac{3}{4}}{1 + \left(-\frac{5}{12}\right) \left(\frac{3}{4}\right)} \] Finding a common denominator for the numerator: \[ -\frac{5}{12} - \frac{3}{4} = -\frac{5}{12} - \frac{9}{12} = -\frac{14}{12} = -\frac{7}{6} \] Now calculating the denominator: \[ 1 + \left(-\frac{5}{12}\right) \left(\frac{3}{4}\right) = 1 - \frac{15}{48} = \frac{48 - 15}{48} = \frac{33}{48} \] Now substituting back into the tangent formula: \[ \tan(A - B) = \frac{-\frac{7}{6}}{\frac{33}{48}} = -\frac{7}{6} \cdot \frac{48}{33} = -\frac{56}{33} \] ### Final Answers (a) \( \sin 2B = \frac{24}{25} \) (b) \( \tan(A - B) = -\frac{56}{33} \)
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

find the value of angle whose sine is given as

Given that tan (A+ B) =1 and tan (A-B) = 1/7, find without using tables the values of tan A and tan B.

Is it possible to construct an angle whose sine =(4)/(3) ?

If a : b=2:5, . find the value of (3a+2b)/(4a+b)

Given that sin A = 3/5 and that A is an acute anlge, find without using talbes, the values of sin 2 A , cos 2 A and tan 2A. Hence find the value of sin 4A.

ABC is an acute-angled triangle incribed in a circle of radius 5 cm and centre O . The sine of angle A is equal to (3)/(5). Calculate without using tables : (i) the length of BC (ii) sin OBC (iii) sin BOC (iv) cos BOC

In an acute angled triangle A B C , if tan(A+B-C)=1 and ,sec(B+C-A)=2, find the value of A ,Ba n dCdot

In an acute angled DeltaABC , if tan (A+B-C) = 1 and sec (B+C-A)=2 , then find the value of cos (4B-3A) .

A triangle ABC is right angled at B. Find the value of (sec A.sin C - tan A.tan C)/(sin B)

If theta is an acute angle and sin theta=(a^2-b^2)/(a^2+b^2) (a, b>0) find the values of tan theta , sec theta and cosec theta

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5 (C )
  1. Derive function of 120^(@) from functions of 60^(@) and check by usi...

    Text Solution

    |

  2. If sin theta =a and sin 2 theta = b, find an expression for cos theta...

    Text Solution

    |

  3. Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and ta...

    Text Solution

    |

  4. If A is an obtuse angle whose sine is (5)/(13) and B is an acute ang...

    Text Solution

    |

  5. Express cos 6 alpha in terms of cos 3 alpha .

    Text Solution

    |

  6. sin 100 in terms of functions of 5 theta ,

    Text Solution

    |

  7. write tan 8 alpha in temrs of tan 4 alpha .

    Text Solution

    |

  8. cos 2 theta in terms of cos 4 theta,

    Text Solution

    |

  9. tan 4 phi in terms of cos 8phi,

    Text Solution

    |

  10. Express sin "" (5pi)/(2) in terms of cos 5pi ,

    Text Solution

    |

  11. cos 20 theta in terms of sin 5 theta .

    Text Solution

    |

  12. Using the half angle formulas, find the exact value of (i) sin 15 ^(@)...

    Text Solution

    |

  13. In the triangle ABC , in which C is the right angle, prove that : s...

    Text Solution

    |

  14. If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ...

    Text Solution

    |

  15. Given that cos ""(A)/(2) = (12)/(13), calculate without the use of tu...

    Text Solution

    |

  16. Given that tan x = (12)/(5), cos y = (-3)/(5), and the angles x and y ...

    Text Solution

    |

  17. Given that sin ^(2) beta = sin alpha cos alpha, show that cos 2 beta...

    Text Solution

    |

  18. Derive formulas for the following in terms of functions of 2 theta an...

    Text Solution

    |

  19. If sin alpha = 3/5, find value of (i) sin 3 alpha , (ii) cos 3 alpha ...

    Text Solution

    |

  20. If 2 cos theta = x + (1)/(x), prove that 2 cos 3 theta = x ^(3) + (1...

    Text Solution

    |