Home
Class 11
MATHS
cos 20 theta in terms of sin 5 theta ....

`cos 20 theta ` in terms of ` sin 5 theta .`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \cos 20\theta \) in terms of \( \sin 5\theta \), we can follow these steps: ### Step 1: Use the double angle identity for cosine We start with the identity: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] We can express \( \cos 20\theta \) as: \[ \cos 20\theta = \cos(4 \cdot 5\theta) = \cos(2 \cdot 10\theta) = 2\cos^2(10\theta) - 1 \] ### Step 2: Express \( \cos 10\theta \) using the double angle identity again Now we need to express \( \cos 10\theta \): \[ \cos 10\theta = \cos(2 \cdot 5\theta) = 2\cos^2(5\theta) - 1 \] Substituting this back into our expression for \( \cos 20\theta \): \[ \cos 20\theta = 2(2\cos^2(5\theta) - 1)^2 - 1 \] ### Step 3: Expand the expression Now we expand \( (2\cos^2(5\theta) - 1)^2 \): \[ (2\cos^2(5\theta) - 1)^2 = 4\cos^4(5\theta) - 4\cos^2(5\theta) + 1 \] Substituting this back into the equation for \( \cos 20\theta \): \[ \cos 20\theta = 2(4\cos^4(5\theta) - 4\cos^2(5\theta) + 1) - 1 \] \[ = 8\cos^4(5\theta) - 8\cos^2(5\theta) + 2 - 1 \] \[ = 8\cos^4(5\theta) - 8\cos^2(5\theta) + 1 \] ### Step 4: Use the identity \( \cos^2(5\theta) = 1 - \sin^2(5\theta) \) Now, we can express \( \cos^2(5\theta) \) in terms of \( \sin(5\theta) \): \[ \cos^2(5\theta) = 1 - \sin^2(5\theta) \] Substituting this into our expression: \[ \cos 20\theta = 8(1 - \sin^2(5\theta))^2 - 8(1 - \sin^2(5\theta)) + 1 \] ### Step 5: Expand and simplify Now we expand \( (1 - \sin^2(5\theta))^2 \): \[ (1 - \sin^2(5\theta))^2 = 1 - 2\sin^2(5\theta) + \sin^4(5\theta) \] Substituting this back: \[ \cos 20\theta = 8(1 - 2\sin^2(5\theta) + \sin^4(5\theta)) - 8(1 - \sin^2(5\theta)) + 1 \] \[ = 8 - 16\sin^2(5\theta) + 8\sin^4(5\theta) - 8 + 8\sin^2(5\theta) + 1 \] \[ = 8\sin^4(5\theta) - 8\sin^2(5\theta) + 1 \] ### Final Expression Thus, we have expressed \( \cos 20\theta \) in terms of \( \sin 5\theta \): \[ \cos 20\theta = 8\sin^4(5\theta) - 8\sin^2(5\theta) + 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Represent cos 6 theta in terms of cos theta .

cos 2 theta in terms of cos 4 theta,

Write cos 4 theta in terms of cos theta.

Simplify be reducing to a single term : cos 5 theta cos 2 theta - sin 5 theta sin 2 theta.

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).

Prove that all lines represented by the equation (2 cos theta + 3 sin theta ) x + (3 cos theta - 5 sin theta ) y = 5 cos theta - 2 sin theta pass through a fixed point for all theta What are the coordinates of this fixed point ?

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5 (C )
  1. Derive function of 120^(@) from functions of 60^(@) and check by usi...

    Text Solution

    |

  2. If sin theta =a and sin 2 theta = b, find an expression for cos theta...

    Text Solution

    |

  3. Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and ta...

    Text Solution

    |

  4. If A is an obtuse angle whose sine is (5)/(13) and B is an acute ang...

    Text Solution

    |

  5. Express cos 6 alpha in terms of cos 3 alpha .

    Text Solution

    |

  6. sin 100 in terms of functions of 5 theta ,

    Text Solution

    |

  7. write tan 8 alpha in temrs of tan 4 alpha .

    Text Solution

    |

  8. cos 2 theta in terms of cos 4 theta,

    Text Solution

    |

  9. tan 4 phi in terms of cos 8phi,

    Text Solution

    |

  10. Express sin "" (5pi)/(2) in terms of cos 5pi ,

    Text Solution

    |

  11. cos 20 theta in terms of sin 5 theta .

    Text Solution

    |

  12. Using the half angle formulas, find the exact value of (i) sin 15 ^(@)...

    Text Solution

    |

  13. In the triangle ABC , in which C is the right angle, prove that : s...

    Text Solution

    |

  14. If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ...

    Text Solution

    |

  15. Given that cos ""(A)/(2) = (12)/(13), calculate without the use of tu...

    Text Solution

    |

  16. Given that tan x = (12)/(5), cos y = (-3)/(5), and the angles x and y ...

    Text Solution

    |

  17. Given that sin ^(2) beta = sin alpha cos alpha, show that cos 2 beta...

    Text Solution

    |

  18. Derive formulas for the following in terms of functions of 2 theta an...

    Text Solution

    |

  19. If sin alpha = 3/5, find value of (i) sin 3 alpha , (ii) cos 3 alpha ...

    Text Solution

    |

  20. If 2 cos theta = x + (1)/(x), prove that 2 cos 3 theta = x ^(3) + (1...

    Text Solution

    |