Home
Class 11
MATHS
Given that tan x = (12)/(5), cos y = (-3...

Given that `tan x = (12)/(5), cos y = (-3)/(5),` and the angles x and y are in the same quadrants, calcualte without the use of tables the values of `(i) sin (x + y), (ii) cos ""(y)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( \sin(x+y) \) and \( \cos\left(\frac{y}{2}\right) \) given that \( \tan x = \frac{12}{5} \) and \( \cos y = -\frac{3}{5} \). ### Step 1: Determine the values of \( \sin x \) and \( \cos x \) Given \( \tan x = \frac{12}{5} \), we can visualize this as a right triangle where the opposite side is 12 and the adjacent side is 5. Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] Now we can find \( \sin x \) and \( \cos x \): \[ \sin x = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{12}{13} \] \[ \cos x = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{13} \] Since \( x \) is in the third quadrant, both sine and cosine will be negative: \[ \sin x = -\frac{12}{13}, \quad \cos x = -\frac{5}{13} \] ### Step 2: Determine the value of \( \sin y \) We know \( \cos y = -\frac{3}{5} \). To find \( \sin y \), we use the identity: \[ \sin^2 y + \cos^2 y = 1 \] Substituting the value of \( \cos y \): \[ \sin^2 y + \left(-\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 y + \frac{9}{25} = 1 \] \[ \sin^2 y = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] \[ \sin y = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5} \] Since \( y \) is also in the third quadrant, \( \sin y \) will be negative: \[ \sin y = -\frac{4}{5} \] ### Step 3: Calculate \( \sin(x+y) \) Using the sine addition formula: \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] Substituting the values we have: \[ \sin(x+y) = \left(-\frac{12}{13}\right)\left(-\frac{3}{5}\right) + \left(-\frac{5}{13}\right)\left(-\frac{4}{5}\right) \] Calculating each term: \[ \sin(x+y) = \frac{36}{65} + \frac{20}{65} = \frac{56}{65} \] ### Step 4: Calculate \( \cos\left(\frac{y}{2}\right) \) Using the half-angle formula: \[ \cos\left(\frac{y}{2}\right) = \sqrt{\frac{1 + \cos y}{2}} \] Since \( \cos y = -\frac{3}{5} \): \[ \cos\left(\frac{y}{2}\right) = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{2}{10}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] Since \( y \) is in the third quadrant, \( \frac{y}{2} \) is in the second quadrant, where cosine is negative: \[ \cos\left(\frac{y}{2}\right) = -\frac{1}{\sqrt{5}} \] ### Final Answers: 1. \( \sin(x+y) = \frac{56}{65} \) 2. \( \cos\left(\frac{y}{2}\right) = -\frac{1}{\sqrt{5}} \)
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If sinx=3/5,cosy=-(12)/(13), where x and y both lie in second quadrant, find the value of sin (x + y)dot

If 5 sin x cos y = 1, 4 tan x = tan y, then

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

Given that cos(x-y) +cos (y-z) +cos (z-x)=-3/5 find cos x+ cos y + cos z

Using the given figure , find the value of angle A , if : (i) x= y (ii) x= sqrt3 y (iii) sqrt3, x=y

Prove that : (cos x + cos y)^2 + (sin x - sin y)^2 = 4 cos^2\ (x+y)/2

Find the greatest value of x^2 y^3 , where x and y lie in the first quadrant on the line 3x+4y=5 .

If cos x+cos y-cos(x+y)=(3)/(2) , then

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5 (C )
  1. Derive function of 120^(@) from functions of 60^(@) and check by usi...

    Text Solution

    |

  2. If sin theta =a and sin 2 theta = b, find an expression for cos theta...

    Text Solution

    |

  3. Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and ta...

    Text Solution

    |

  4. If A is an obtuse angle whose sine is (5)/(13) and B is an acute ang...

    Text Solution

    |

  5. Express cos 6 alpha in terms of cos 3 alpha .

    Text Solution

    |

  6. sin 100 in terms of functions of 5 theta ,

    Text Solution

    |

  7. write tan 8 alpha in temrs of tan 4 alpha .

    Text Solution

    |

  8. cos 2 theta in terms of cos 4 theta,

    Text Solution

    |

  9. tan 4 phi in terms of cos 8phi,

    Text Solution

    |

  10. Express sin "" (5pi)/(2) in terms of cos 5pi ,

    Text Solution

    |

  11. cos 20 theta in terms of sin 5 theta .

    Text Solution

    |

  12. Using the half angle formulas, find the exact value of (i) sin 15 ^(@)...

    Text Solution

    |

  13. In the triangle ABC , in which C is the right angle, prove that : s...

    Text Solution

    |

  14. If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ...

    Text Solution

    |

  15. Given that cos ""(A)/(2) = (12)/(13), calculate without the use of tu...

    Text Solution

    |

  16. Given that tan x = (12)/(5), cos y = (-3)/(5), and the angles x and y ...

    Text Solution

    |

  17. Given that sin ^(2) beta = sin alpha cos alpha, show that cos 2 beta...

    Text Solution

    |

  18. Derive formulas for the following in terms of functions of 2 theta an...

    Text Solution

    |

  19. If sin alpha = 3/5, find value of (i) sin 3 alpha , (ii) cos 3 alpha ...

    Text Solution

    |

  20. If 2 cos theta = x + (1)/(x), prove that 2 cos 3 theta = x ^(3) + (1...

    Text Solution

    |