Home
Class 11
MATHS
If alpha,beta are the roots of ax^(2)+bx...

If `alpha,beta` are the roots of `ax^(2)+bx+c=0`, find the value of
(i) `((alpha)/(beta)-(beta)/(alpha))^(2)`
(ii) `(alpha^(3))/(beta)+(beta^(3))/(alpha)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the values of two expressions involving the roots \( \alpha \) and \( \beta \) of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-step Solution: **Given:** - The roots of the equation \( ax^2 + bx + c = 0 \) are \( \alpha \) and \( \beta \). - From Vieta's formulas, we know: - \( \alpha + \beta = -\frac{b}{a} \) - \( \alpha \beta = \frac{c}{a} \) #### Part (i): Find \( \left( \frac{\alpha}{\beta} - \frac{\beta}{\alpha} \right)^2 \) 1. **Simplify the expression:** \[ \frac{\alpha}{\beta} - \frac{\beta}{\alpha} = \frac{\alpha^2 - \beta^2}{\alpha \beta} \] Here, we find a common denominator. 2. **Factor \( \alpha^2 - \beta^2 \):** \[ \alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta) \] Therefore, \[ \frac{\alpha}{\beta} - \frac{\beta}{\alpha} = \frac{(\alpha - \beta)(\alpha + \beta)}{\alpha \beta} \] 3. **Substituting values from Vieta's formulas:** - \( \alpha + \beta = -\frac{b}{a} \) - \( \alpha \beta = \frac{c}{a} \) Thus, \[ \frac{\alpha}{\beta} - \frac{\beta}{\alpha} = \frac{(\alpha - \beta)(-\frac{b}{a})}{\frac{c}{a}} = \frac{(\alpha - \beta)(-b)}{c} \] 4. **Square the expression:** \[ \left( \frac{\alpha}{\beta} - \frac{\beta}{\alpha} \right)^2 = \left( \frac{(\alpha - \beta)(-b)}{c} \right)^2 = \frac{(\alpha - \beta)^2 b^2}{c^2} \] 5. **Using the identity for \( (\alpha - \beta)^2 \):** \[ (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta \] Substitute the values: \[ (\alpha - \beta)^2 = \left(-\frac{b}{a}\right)^2 - 4 \cdot \frac{c}{a} = \frac{b^2}{a^2} - \frac{4c}{a} \] Multiply by \( a^2 \): \[ = \frac{b^2 - 4ac}{a^2} \] 6. **Final expression for part (i):** \[ \left( \frac{\alpha}{\beta} - \frac{\beta}{\alpha} \right)^2 = \frac{(b^2 - 4ac)b^2}{c^2 a^2} \] #### Part (ii): Find \( \frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha} \) 1. **Combine the fractions:** \[ \frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha} = \frac{\alpha^4 + \beta^4}{\alpha \beta} \] 2. **Use the identity for \( \alpha^4 + \beta^4 \):** \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2 \] 3. **Calculate \( \alpha^2 + \beta^2 \):** \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{b}{a}\right)^2 - 2\cdot\frac{c}{a} = \frac{b^2}{a^2} - \frac{2c}{a} \] 4. **Substituting back:** \[ \alpha^4 + \beta^4 = \left( \frac{b^2 - 2ac}{a^2} \right)^2 - 2\left( \frac{c}{a} \right)^2 \] 5. **Final expression for part (ii):** \[ \frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha} = \frac{(\alpha^4 + \beta^4)}{\alpha \beta} = \frac{\left( \frac{(b^2 - 2ac)^2 - 2c^2}{a^4} \right)}{\frac{c}{a}} = \frac{(b^2 - 2ac)^2 - 2c^2}{ac} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (d)|14 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (e)|4 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (b)|16 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha,beta are the roots of the equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alphabeta .

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation x^(2)+px+q=0 , find the value of (a) alpha^(3)beta+alphabeta^(3) (b) alpha^(4)+alpha^(2)beta^(2)+beta^(4) .

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha,beta be the roots of the equation x^(2)-x-1=0 , determine the value of i) alpha^(2)+beta^(2) and (ii) alpha^(3)+beta^(3) .

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

ICSE-QUADRATIC EQUATIONS-EXERCISE 10 (c)
  1. If the roots of the equation x^(2)+px+7=0 are denoted by alpha and bet...

    Text Solution

    |

  2. If alpha,beta are the roots of the equation 3x^(2)-6x+4=0, find the va...

    Text Solution

    |

  3. If alpha,beta are the roots of ax^(2)+bx+c=0, find the value of (i) ...

    Text Solution

    |

  4. If the sum of the roots of the equation x^(2)-px+q=0 be m times their ...

    Text Solution

    |

  5. If one root of the equation x^(2)+ax+8=0 is 4 while the equation x^(2)...

    Text Solution

    |

  6. Find the value of a for which one root of the quadratic equation (a^(2...

    Text Solution

    |

  7. If alpha,beta are the roots of the equation ax^(2)-bx+b=0, prove that ...

    Text Solution

    |

  8. If alpha and beta are the roots of the equation x^(2)+x-7=0, form the ...

    Text Solution

    |

  9. If alpha and beta are the roots of the equation 2x^(2)+3x+2=0, find th...

    Text Solution

    |

  10. Find the equation whose roots are (alpha)/(beta) and (beta)/(alpha), w...

    Text Solution

    |

  11. If alpha and beta are the roots of the equation 2x^(2)-3x+1=0, form th...

    Text Solution

    |

  12. If a ne b and a^(2)=5a-3,b^(2)=5b-3, then form that equation whose roo...

    Text Solution

    |

  13. Given that alpha and beta are the roots of the equation x^(2)=x+7. (...

    Text Solution

    |

  14. Given that alpha and beta are the roots of the equation x^(2)-x+7=0, f...

    Text Solution

    |

  15. Given that alpha and beta are the roots of the equation 2x^(2)-3x+4=0,...

    Text Solution

    |

  16. The roots of the quadratic equation x^(2)+px+8=0 are alpha and beta. ...

    Text Solution

    |

  17. If the roots of x^(2)-bx+c=0 be two consecutive integers, then find th...

    Text Solution

    |

  18. The roots of the equation px^(2)-2(p+1)x+3p=0 are alpha and beta. If a...

    Text Solution

    |

  19. The roots of the equation ax^(2)+bx+c=0 are alpha and beta. Form the q...

    Text Solution

    |

  20. Two candidates attempt to solve a quadratic equation of the form x^(2)...

    Text Solution

    |