Home
Class 11
MATHS
Find the least value of (6x^(2)-22x+21)/...

Find the least value of `(6x^(2)-22x+21)/(5x^(2)-18x+17)` for real values of x.

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the expression \(\frac{6x^2 - 22x + 21}{5x^2 - 18x + 17}\) for real values of \(x\), we can follow these steps: ### Step 1: Define the expression Let \[ y = \frac{6x^2 - 22x + 21}{5x^2 - 18x + 17} \] ### Step 2: Rearrange the equation Rearranging gives us: \[ y(5x^2 - 18x + 17) = 6x^2 - 22x + 21 \] This can be rewritten as: \[ (6 - 5y)x^2 + (-22 + 18y)x + (21 - 17y) = 0 \] ### Step 3: Apply the discriminant condition For \(x\) to have real solutions, the discriminant \(D\) of the quadratic equation must be greater than or equal to zero. The discriminant \(D\) is given by: \[ D = b^2 - 4ac \] where \(a = 6 - 5y\), \(b = -22 + 18y\), and \(c = 21 - 17y\). ### Step 4: Calculate the discriminant Substituting the values of \(a\), \(b\), and \(c\) into the discriminant: \[ D = (-22 + 18y)^2 - 4(6 - 5y)(21 - 17y) \geq 0 \] ### Step 5: Expand and simplify the discriminant Expanding the terms: \[ D = (484 - 792y + 324y^2) - 4[(126 - 102y + 30y^2)] \] \[ = 484 - 792y + 324y^2 - 504 + 408y - 120y^2 \] \[ = (324y^2 - 120y^2) + (-792y + 408y) + (484 - 504) \] \[ = 204y^2 - 384y - 20 \geq 0 \] ### Step 6: Solve the quadratic inequality Now we need to solve the quadratic inequality: \[ 204y^2 - 384y - 20 \geq 0 \] First, we find the roots using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{384 \pm \sqrt{(-384)^2 - 4 \cdot 204 \cdot (-20)}}{2 \cdot 204} \] Calculating the discriminant: \[ = 147456 + 16320 = 163776 \] Now, substituting back to find \(y\): \[ y = \frac{384 \pm \sqrt{163776}}{408} \] ### Step 7: Find the critical points Calculating the roots gives us two critical points. We can use these points to test intervals for the inequality \(204y^2 - 384y - 20 \geq 0\). ### Step 8: Determine the intervals After finding the roots, we can determine the intervals where the quadratic is non-negative. The least value of \(y\) will be at the lower bound of these intervals. ### Conclusion After solving the inequality, we find that the least value of \(y\) is: \[ \text{Least value of } y = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise CHAPTER TEST|24 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (e)|4 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

Find the least value of ((6x^2-22 x+21))/((5x^2-18x+17)) for real xdot

Prove that (6x^(2)-22x+21)/(5x^(2)-18x +17) for real values of x lies between 1 and (5)/(4) .

Find the value of x , if 6x=23^2-17^2

Find the value of x if x^2+5x+6=0

If x=5, find the value of : 6-7x^(2)

Find the greatest value of 3+5x- 2x^(2) for all real values of x.

Find the greatest and least values of (x+2)/(2x^(2)+3x+6) AA x in R

Find the value of : 4x^(3)-5x^(2)-6x+7 when x=3

Find the sign of 6x^(2)-5x+1 for all real value of x.

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is