Home
Class 11
MATHS
Write out the expansions of the followin...

Write out the expansions of the following:
(f) `((2)/(x) - (x)/(2) )^(5) , x ne 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the expansion of \(\left(\frac{2}{x} - \frac{x}{2}\right)^5\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the components for the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, we can rewrite the expression as: \[ \left(\frac{2}{x} + \left(-\frac{x}{2}\right)\right)^5 \] Here, \(a = \frac{2}{x}\), \(b = -\frac{x}{2}\), and \(n = 5\). ### Step 2: Write out the expansion using the Binomial Theorem Using the Binomial Theorem, we expand: \[ \left(\frac{2}{x} - \frac{x}{2}\right)^5 = \sum_{k=0}^{5} \binom{5}{k} \left(\frac{2}{x}\right)^{5-k} \left(-\frac{x}{2}\right)^k \] ### Step 3: Calculate each term in the expansion We will calculate each term for \(k = 0\) to \(k = 5\): 1. **For \(k = 0\)**: \[ \binom{5}{0} \left(\frac{2}{x}\right)^5 \left(-\frac{x}{2}\right)^0 = 1 \cdot \frac{32}{x^5} \cdot 1 = \frac{32}{x^5} \] 2. **For \(k = 1\)**: \[ \binom{5}{1} \left(\frac{2}{x}\right)^4 \left(-\frac{x}{2}\right)^1 = 5 \cdot \frac{16}{x^4} \cdot \left(-\frac{x}{2}\right) = -\frac{80}{x^3} \] 3. **For \(k = 2\)**: \[ \binom{5}{2} \left(\frac{2}{x}\right)^3 \left(-\frac{x}{2}\right)^2 = 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} = 20 \cdot \frac{2}{x} = \frac{40}{x} \] 4. **For \(k = 3\)**: \[ \binom{5}{3} \left(\frac{2}{x}\right)^2 \left(-\frac{x}{2}\right)^3 = 10 \cdot \frac{4}{x^2} \cdot \left(-\frac{x^3}{8}\right) = -\frac{40x}{8} = -5x \] 5. **For \(k = 4\)**: \[ \binom{5}{4} \left(\frac{2}{x}\right)^1 \left(-\frac{x}{2}\right)^4 = 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} = \frac{10x^3}{16} = \frac{5x^3}{8} \] 6. **For \(k = 5\)**: \[ \binom{5}{5} \left(\frac{2}{x}\right)^0 \left(-\frac{x}{2}\right)^5 = 1 \cdot 1 \cdot \left(-\frac{x^5}{32}\right) = -\frac{x^5}{32} \] ### Step 4: Combine all terms Now, we combine all the terms: \[ \frac{32}{x^5} - \frac{80}{x^3} + \frac{40}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32} \] ### Final Expansion Thus, the final expansion of \(\left(\frac{2}{x} - \frac{x}{2}\right)^5\) is: \[ \frac{32}{x^5} - \frac{80}{x^3} + \frac{40}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BINOMIAL THEOREM

    ICSE|Exercise CHAPTER TEST|14 Videos
  • BINOMIAL THEOREM

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|21 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

Write out the expansions of the following: (3x-y)^(4)

Write out the expansions of the following: (e ) (1+2x)^(7)

Write out the expansions of the following: (c ) (x- (y)/(2) )^(4)

Write out the expansion of the following: (2x + (y)/(2) )^(5)

Write out the expansions of the following: (3+2x^(2) )^(4)

Expand ((2)/( x) - (x)/(2))^(5), x ne 0 .

Using binomial theorem, write down the expansions of the following: \ (1+2x-3x^2)^5

Write the expansion of (3 + x - x^2)^4

Find the fourth term from the end in the expansion of ((3x)/(5)-(5)/(6x))^(9),x ne0

Find the 9th term in the expansion of ( 3x - (1)/( 2x ) )^(8), x ne 0 .

ICSE-BINOMIAL THEOREM-EXERCISE 13 (a)
  1. Write out the expansions of the following: (3x-y)^(4)

    Text Solution

    |

  2. Write out the expansions of the following: (3+2x^(2) )^(4)

    Text Solution

    |

  3. Write out the expansions of the following: (c ) (x- (y)/(2) )^(4)

    Text Solution

    |

  4. Write out the expansion of the following: (2x + (y)/(2) )^(5)

    Text Solution

    |

  5. Write out the expansions of the following: (e ) (1+2x)^(7)

    Text Solution

    |

  6. Write out the expansions of the following: (f) ((2)/(x) - (x)/(2) )^...

    Text Solution

    |

  7. Using binomial theorem, expand [ ( x+y)^(5) + (x-y)^(5) ] and hence fi...

    Text Solution

    |

  8. Expand (2+ x)^(5) - (2- x)^(5) in ascending powers of x and simplify y...

    Text Solution

    |

  9. Evaluate the following: (i) (2 + sqrt(5) )^(5) + (2 - sqrt(5) )^(5) ...

    Text Solution

    |

  10. If the first three terms in the expansion of (1 + ax)^(n) in ascending...

    Text Solution

    |

  11. Find the first three terms in the expansion of [ 2+ x ( 3+ 4x)]^(5) in...

    Text Solution

    |

  12. Expand (1+ 2 x + 3x^(2) )^(n) in a series of ascending powers of x up ...

    Text Solution

    |

  13. Write down the expansion by the binomial theorem of (3x - (y)/(2) )^(4...

    Text Solution

    |

  14. Using binomial theorem, evaluate : (999)^(3).

    Text Solution

    |

  15. Write down in terms of x and n, the term containing x^3 in the expans...

    Text Solution

    |

  16. (i) Obtain the binomial expansion of (2- sqrt(3) )^(6) in the form a+b...

    Text Solution

    |

  17. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  18. If the coefficients of second, third and fourth terms in the expansion...

    Text Solution

    |

  19. Let n be a positive integer. If the coefficients of 2nd, 3rd, 4th term...

    Text Solution

    |

  20. In the binomial expansion of ( root(3) (4) + sqrt(2) )^5 find the term...

    Text Solution

    |