Home
Class 11
MATHS
If f(x) = (x^(2)-9)/(x-3) , find it Lim(...

If f(x) `= (x^(2)-9)/(x-3)` , find it `Lim_(x to 3) f(x)` exists .

Text Solution

Verified by Experts

The correct Answer is:
=6 , therefore , `Lim_(x to 3 ) f(x)` exists and is equal to 6 .
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x^2 + 9)/(sqrt(x-3)) find f(4) + f(5)

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f(x)=(|x-a|)/(x-a) , then show that lim_(xrarra) f(x) does not exist.

if f(x)=((e^((x+3)ln27))^(x/27)-9)/(3^x-27) , x 3 if lim_(x->3)f(x) exist then lmbda is

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Given that f(x) = (4-7x)/((3x+4)) , I = Lim_(x to 2 ) f(x) and m = Lim_(x to 0) f(x) , form the equation whose are 1/l , 1/m

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

f(x)=(3x^2+a x+a+1)/(x^2+x-2) and lim_(x->-2)f(x) exists. Then the value of (a-4) is__________

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.