Home
Class 11
MATHS
Let a function f be defined as f(x) = ...

Let a function f be defined as
`f(x) = {:{(x," if " 0 le x lt 1/2),(0," if "x=1/2),(x-1," if" 1/2 lt x le 1):}`
Establish the existence of `Lim_(x to 1/2) f(x)` .

Text Solution

AI Generated Solution

The correct Answer is:
To establish the existence of the limit \( \lim_{x \to \frac{1}{2}} f(x) \) for the given piecewise function \[ f(x) = \begin{cases} x & \text{if } 0 \leq x < \frac{1}{2} \\ 0 & \text{if } x = \frac{1}{2} \\ x - 1 & \text{if } \frac{1}{2} < x \leq 1 \end{cases} \] we need to find both the left-hand limit and the right-hand limit as \( x \) approaches \( \frac{1}{2} \). ### Step 1: Calculate the Right-Hand Limit The right-hand limit as \( x \) approaches \( \frac{1}{2} \) is given by: \[ \lim_{x \to \frac{1}{2}^+} f(x) \] For \( x \) slightly greater than \( \frac{1}{2} \), we use the third case of the function: \[ f(x) = x - 1 \] Thus, we can write: \[ \lim_{x \to \frac{1}{2}^+} f(x) = \lim_{x \to \frac{1}{2}^+} (x - 1) \] Substituting \( x = \frac{1}{2} + h \) where \( h \to 0^+ \): \[ \lim_{h \to 0^+} \left(\frac{1}{2} + h - 1\right) = \lim_{h \to 0^+} \left(h - \frac{1}{2}\right) = -\frac{1}{2} \] ### Step 2: Calculate the Left-Hand Limit The left-hand limit as \( x \) approaches \( \frac{1}{2} \) is given by: \[ \lim_{x \to \frac{1}{2}^-} f(x) \] For \( x \) slightly less than \( \frac{1}{2} \), we use the first case of the function: \[ f(x) = x \] Thus, we can write: \[ \lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^-} x \] Substituting \( x = \frac{1}{2} - h \) where \( h \to 0^+ \): \[ \lim_{h \to 0^+} \left(\frac{1}{2} - h\right) = \frac{1}{2} \] ### Step 3: Compare the Limits Now we compare the left-hand limit and the right-hand limit: - Right-hand limit: \( \lim_{x \to \frac{1}{2}^+} f(x) = -\frac{1}{2} \) - Left-hand limit: \( \lim_{x \to \frac{1}{2}^-} f(x) = \frac{1}{2} \) Since the left-hand limit and the right-hand limit are not equal: \[ \lim_{x \to \frac{1}{2}^+} f(x) \neq \lim_{x \to \frac{1}{2}^-} f(x) \] ### Conclusion Thus, we conclude that: \[ \lim_{x \to \frac{1}{2}} f(x) \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):} Discuss the continuity

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Discuss the continuity of the function f(x)= {(x , 0 le x lt1/2 ),( 12,x=1/2),( 1-x , 1/2ltxle1):} at the point x=1//2 .

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at: