Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 1) (x^(2)-sqrt(x))/(sqrt(x)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} \), we can follow these steps: ### Step 1: Substitute \( \sqrt{x} \) with \( t \) Let \( t = \sqrt{x} \). Then, \( x = t^2 \). As \( x \to 1 \), \( t \to 1 \). ### Step 2: Rewrite the limit in terms of \( t \) Substituting \( x = t^2 \) into the limit gives us: \[ \lim_{t \to 1} \frac{(t^2)^2 - t}{t - 1} \] This simplifies to: \[ \lim_{t \to 1} \frac{t^4 - t}{t - 1} \] ### Step 3: Factor the numerator We can factor the numerator \( t^4 - t \): \[ t^4 - t = t(t^3 - 1) \] Using the difference of cubes, we can further factor \( t^3 - 1 \): \[ t^3 - 1 = (t - 1)(t^2 + t + 1) \] Thus, the numerator becomes: \[ t(t - 1)(t^2 + t + 1) \] ### Step 4: Substitute back into the limit Now we can rewrite the limit: \[ \lim_{t \to 1} \frac{t(t - 1)(t^2 + t + 1)}{t - 1} \] We can cancel \( t - 1 \) from the numerator and denominator (as long as \( t \neq 1 \)): \[ \lim_{t \to 1} t(t^2 + t + 1) \] ### Step 5: Evaluate the limit Now we can directly substitute \( t = 1 \): \[ 1(1^2 + 1 + 1) = 1(1 + 1 + 1) = 1 \cdot 3 = 3 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} = 3 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 2) (x-2)/(sqrt(x)-sqrt(2))

Evaluate the following limits : Lim_(x to 0) (sqrt(x+2)-sqrt(2))/x

Evaluate the following limits : Lim_(x to 1 ) (x-1)/(x+1)

Evaluate the following limits : Lim_( x to 1) x^(1/(x-1))

Evaluate the following limits : Lim_(x to 0) (sqrt(1+x)-1)/x

Evaluate the following limits : Lim_(x to 4) (3-sqrt((5+x)))/(x-4)

Evaluate the following limits : Lim_(x to a) (sqrt(x)-sqrt(a))/(x-a)

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/(sqrt(1+x)-1)

Evaluate the following limits : Lim_(xtoa) (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)), a != 0

Evaluate the following limits : Lim_( x to 0 ) x/(sqrt((x+1)-1))