Home
Class 11
MATHS
Evaluate the following limits : Lim(xt...

Evaluate the following limits :
`Lim_(xto3) (x^(2)-9) (1/(x+3)+1/(x-3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 3} (x^2 - 9) \left( \frac{1}{x + 3} + \frac{1}{x - 3} \right), \] we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the limit: \[ \lim_{x \to 3} (x^2 - 9) \left( \frac{1}{x + 3} + \frac{1}{x - 3} \right). \] First, we can find a common denominator for the fractions: \[ \frac{1}{x + 3} + \frac{1}{x - 3} = \frac{(x - 3) + (x + 3)}{(x + 3)(x - 3)} = \frac{2x}{(x + 3)(x - 3)}. \] ### Step 2: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to 3} (x^2 - 9) \cdot \frac{2x}{(x + 3)(x - 3)}. \] ### Step 3: Factor \(x^2 - 9\) Notice that \(x^2 - 9\) can be factored as: \[ x^2 - 9 = (x - 3)(x + 3). \] So, we can rewrite the limit as: \[ \lim_{x \to 3} (x - 3)(x + 3) \cdot \frac{2x}{(x + 3)(x - 3)}. \] ### Step 4: Cancel common terms Now we can cancel \((x - 3)\) and \((x + 3)\) from the numerator and denominator: \[ \lim_{x \to 3} 2x. \] ### Step 5: Evaluate the limit Now we can directly substitute \(x = 3\): \[ 2 \cdot 3 = 6. \] Thus, the limit is: \[ \lim_{x \to 3} (x^2 - 9) \left( \frac{1}{x + 3} + \frac{1}{x - 3} \right) = 6. \] ### Final Answer: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(xto3^(-)) ([x]-x)

Evaluate the following limits : Lim_( xto2) (x^(3)-8)/(x-2)

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(xto3) (x^(3)-6x-9)/(x^(4)-81)

Evaluate the following limits : Lim_(xto 1) (x^(m)-1)/(x^(n)-1)

Evaluate the following limits : Lim_(x to 9 ) (x^(3//2)-27)/(x-9)

Evaluate the following limits : Lim_(x to 0) (3^(2x)-2^(3x))/x

Evaluate the following limits : Lim_( x to 0) (3^(2x)-1)/(2^(3x)-1)

Evaluate the following limits : Lim_( x to 0) (3^(2x)-1)/(2^(3x)-1)

Evaluate the following limits : Lim_(xto1) (x-1)/(2x^(2)-7x+5)