Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1+x^2}}{\sqrt{1-x^2} - \sqrt{1-x}}, \] we will follow these steps: ### Step 1: Substitute \(x = 0\) First, we substitute \(x = 0\) into the expression: \[ \frac{\sqrt{1+0} - \sqrt{1+0^2}}{\sqrt{1-0^2} - \sqrt{1-0}} = \frac{\sqrt{1} - \sqrt{1}}{\sqrt{1} - \sqrt{1}} = \frac{0}{0}. \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint:** If you get \( \frac{0}{0} \), consider using L'Hôpital's rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \] provided the limit on the right side exists. ### Step 3: Differentiate the Numerator and Denominator **Numerator:** Let \( f(x) = \sqrt{1+x} - \sqrt{1+x^2} \). Using the chain rule, we differentiate: \[ f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1+x^2}} \cdot (2x) = \frac{1}{2\sqrt{1+x}} - \frac{x}{\sqrt{1+x^2}}. \] **Denominator:** Let \( g(x) = \sqrt{1-x^2} - \sqrt{1-x} \). Differentiating gives: \[ g'(x) = \frac{-x}{\sqrt{1-x^2}} - \frac{-1}{2\sqrt{1-x}} = \frac{-x}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{1-x}}. \] ### Step 4: Substitute Back into the Limit Now we substitute \( f'(x) \) and \( g'(x) \) back into the limit: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}} - \frac{x}{\sqrt{1+x^2}}}{\frac{-x}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{1-x}}}. \] ### Step 5: Evaluate the New Limit Substituting \(x = 0\) into the derivatives: **Numerator:** \[ \frac{1}{2\sqrt{1+0}} - \frac{0}{\sqrt{1+0^2}} = \frac{1}{2} - 0 = \frac{1}{2}. \] **Denominator:** \[ \frac{-0}{\sqrt{1-0^2}} + \frac{1}{2\sqrt{1-0}} = 0 + \frac{1}{2} = \frac{1}{2}. \] Thus, we have: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1. \] ### Final Answer Therefore, the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt((1+x^(2))))/x

Evaluate the following limits : Lim_(x to 0) (sqrt(1+x)-1)/x

Evaluate the following limits : Lim_( xto 0) (sqrt(1+x) -sqrt(1-x))/(2x)

Evaluate the following limits : Lim_(x to 0) (sqrt(x+2)-sqrt(2))/x

Evaluate the following limits : lim_( x to 0 ) (sqrt(1+ax) - sqrt(1-ax))/x

Evaluate the following limits : Lim_(x to a) (sqrt(x)-sqrt(a))/(x-a)

Evaluate the following limits : Lim_( x to 0 ) x/(sqrt((x+1)-1))

Evaluate the following limits : Lim_(xto 0 ) (sqrt((1+x^(3)))-sqrt((1-x^(3))))/(x^(2))

Evaluate the following limits : Lim_(x to 2) (x-2)/(sqrt(x)-sqrt(2))

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/(sqrt(1+x)-1)