Home
Class 11
MATHS
Evaluate the following limits . Lim(x ...

Evaluate the following limits .
`Lim_(x to 0) ((1+x)^(6)-1)/((1+x)^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1}, \] we start by substituting \( x = 0 \): 1. **Substituting \( x = 0 \)**: \[ \frac{(1+0)^6 - 1}{(1+0)^2 - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}. \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint**: When you encounter \( \frac{0}{0} \), consider using L'Hôpital's Rule, which allows you to differentiate the numerator and denominator. 2. **Applying L'Hôpital's Rule**: We differentiate the numerator and the denominator separately. - **Numerator**: Differentiate \( (1+x)^6 - 1 \): \[ \frac{d}{dx}((1+x)^6) = 6(1+x)^5. \] - **Denominator**: Differentiate \( (1+x)^2 - 1 \): \[ \frac{d}{dx}((1+x)^2) = 2(1+x). \] 3. **Rewriting the limit**: Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{6(1+x)^5}{2(1+x)}. \] 4. **Simplifying the expression**: We can simplify the expression: \[ = \lim_{x \to 0} \frac{6(1+x)^5}{2(1+x)} = \lim_{x \to 0} \frac{6}{2} (1+x)^4 = \lim_{x \to 0} 3(1+x)^4. \] 5. **Evaluating the limit**: Now substituting \( x = 0 \): \[ 3(1+0)^4 = 3 \cdot 1 = 3. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1} = 3. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits . Lim_(x to 0 ) ((1+x)^(n)-1)/x

Evaluate the following limits : Lim_(x to 0) ((1+x)^(n)-1)/x

Evaluate the following limits : Lim_( x to 0) ((1+x)^(m)-1)/((1+x)^(n)-1)

Evaluate the following limits : Lim_(x to 0) (1+ax)^(b/x)

Evaluate the following limits : Lim_(x to 0) (x(2^(x)-1))/(1-cos x)

Evaluate the following limits : Lim_(x to 0) (sqrt(1+x)-1)/x

Evaluate the following limits : Lim_(x to 0 ) (x^(n)-1)/(x-1)

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to 0) (x(e^(x)-1))/(1-cos 2x)

Evaluate the following limits : Lim_(x to 1) (x^(2)-1)/(x-1)