Home
Class 11
MATHS
Evaluate Lim(x to a ) (x^(3/5) -a^(3/...

Evaluate
`Lim_(x to a ) (x^(3/5) -a^(3/5))/(x^(1/3)-a^(1/3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to a} \frac{x^{3/5} - a^{3/5}}{x^{1/3} - a^{1/3}}, \] we start by substituting \(x = a\): 1. **Substitution**: \[ \text{If } x = a, \text{ then } x^{3/5} - a^{3/5} = 0 \text{ and } x^{1/3} - a^{1/3} = 0. \] This gives us the indeterminate form \(\frac{0}{0}\). **Hint**: When you encounter the indeterminate form \(\frac{0}{0}\), consider applying L'Hôpital's Rule. 2. **Applying L'Hôpital's Rule**: We differentiate the numerator and the denominator separately: \[ \text{Numerator: } \frac{d}{dx}(x^{3/5}) = \frac{3}{5}x^{-2/5}, \] \[ \text{Denominator: } \frac{d}{dx}(x^{1/3}) = \frac{1}{3}x^{-2/3}. \] 3. **Rewrite the limit**: Using L'Hôpital's Rule, we have: \[ \lim_{x \to a} \frac{x^{3/5} - a^{3/5}}{x^{1/3} - a^{1/3}} = \lim_{x \to a} \frac{\frac{3}{5}x^{-2/5}}{\frac{1}{3}x^{-2/3}}. \] 4. **Simplifying the limit**: This simplifies to: \[ \lim_{x \to a} \frac{\frac{3}{5}}{\frac{1}{3}} \cdot x^{(-2/5) - (-2/3)} = \lim_{x \to a} \frac{3}{5} \cdot 3 \cdot x^{(-2/5 + 2/3)}. \] 5. **Finding a common denominator**: The exponent \(-2/5 + 2/3\) can be calculated by finding a common denominator: \[ -2/5 = -6/15 \quad \text{and} \quad 2/3 = 10/15, \] so, \[ -2/5 + 2/3 = \frac{-6 + 10}{15} = \frac{4}{15}. \] 6. **Final limit**: Now we have: \[ \lim_{x \to a} \frac{9}{5} x^{4/15}. \] Substituting \(x = a\): \[ = \frac{9}{5} a^{4/15}. \] Thus, the final answer is: \[ \frac{9}{5} a^{4/15}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate Lim_(x to a ) ((x+2)^(5/3)-(a+2)^(5/3))/(x-a)

Evaluate lim_(x to 1) (x^(3) - 1)/(x - 1)

Evaluate lim_(x to a) ((x + 3)^(7//5) - (a + 3)^(7//5))/(x - a)

Evaluate : lim_(x to oo) ((x-3)/(x+3))^(x+3)

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate lim_(xtoa) ((x+2)^(5//3)-(a+2)^(5//3))/(x-a).

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate lim_(xto-3) (x^(3)+27)/(x^(5)+243)

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

Evaluate lim_(x to 0) ((sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2)))