Home
Class 11
MATHS
Evaluate Lim(xto 2) (x^(5)-32)/(x^(2)...

Evaluate
`Lim_(xto 2) (x^(5)-32)/(x^(2)-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{x^5 - 32}{x^2 - 4}, \] we can follow these steps: ### Step 1: Factor the denominator The denominator \(x^2 - 4\) can be factored using the difference of squares: \[ x^2 - 4 = (x - 2)(x + 2). \] ### Step 2: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 2} \frac{x^5 - 32}{(x - 2)(x + 2)}. \] ### Step 3: Factor the numerator Notice that \(32\) can be written as \(2^5\). Therefore, we can apply the formula for the difference of powers: \[ x^5 - 32 = x^5 - 2^5 = (x - 2)(x^4 + 2x^3 + 4x^2 + 8x + 16). \] ### Step 4: Substitute the factored form into the limit Substituting the factored form of the numerator into the limit gives us: \[ \lim_{x \to 2} \frac{(x - 2)(x^4 + 2x^3 + 4x^2 + 8x + 16)}{(x - 2)(x + 2)}. \] ### Step 5: Cancel the common factor We can cancel the \((x - 2)\) terms in the numerator and denominator: \[ \lim_{x \to 2} \frac{x^4 + 2x^3 + 4x^2 + 8x + 16}{x + 2}. \] ### Step 6: Substitute \(x = 2\) Now we can directly substitute \(x = 2\): \[ \frac{2^4 + 2 \cdot 2^3 + 4 \cdot 2^2 + 8 \cdot 2 + 16}{2 + 2}. \] Calculating the numerator: \[ 2^4 = 16, \quad 2 \cdot 2^3 = 16, \quad 4 \cdot 2^2 = 16, \quad 8 \cdot 2 = 16, \quad 16 = 16. \] Adding these values together: \[ 16 + 16 + 16 + 16 + 16 = 80. \] Now, calculating the denominator: \[ 2 + 2 = 4. \] ### Step 7: Final calculation Now we can compute the limit: \[ \frac{80}{4} = 20. \] ### Conclusion Thus, we conclude that: \[ \lim_{x \to 2} \frac{x^5 - 32}{x^2 - 4} = 20. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(5) - 32)/(x - 2)

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(xto2) (x^(10)-1024)/(x^(5)-32).

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto-3) (x^(3)+27)/(x^(5)+243)

Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .