Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo) ((x+1)(2x+3))/((x+2)(3x+4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \frac{(x+1)(2x+3)}{(x+2)(3x+4)}, \] we will follow these steps: ### Step 1: Identify the limit form As \( x \) approaches infinity, both the numerator and denominator approach infinity. Thus, we have an indeterminate form of type \(\frac{\infty}{\infty}\). ### Step 2: Factor out the highest power of \( x \) In both the numerator and denominator, we will factor out \( x \) from each term: \[ \text{Numerator: } (x+1)(2x+3) = x(1 + \frac{1}{x}) \cdot x(2 + \frac{3}{x}) = x^2(1 + \frac{1}{x})(2 + \frac{3}{x}). \] \[ \text{Denominator: } (x+2)(3x+4) = x(1 + \frac{2}{x}) \cdot x(3 + \frac{4}{x}) = x^2(1 + \frac{2}{x})(3 + \frac{4}{x}). \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to \infty} \frac{x^2(1 + \frac{1}{x})(2 + \frac{3}{x})}{x^2(1 + \frac{2}{x})(3 + \frac{4}{x})}. \] ### Step 4: Cancel \( x^2 \) Since \( x^2 \) appears in both the numerator and denominator, we can cancel it out: \[ \lim_{x \to \infty} \frac{(1 + \frac{1}{x})(2 + \frac{3}{x})}{(1 + \frac{2}{x})(3 + \frac{4}{x})}. \] ### Step 5: Evaluate the limit as \( x \to \infty \) Now we can substitute \( x \to \infty \): - As \( x \to \infty \), \( \frac{1}{x} \to 0 \). - Thus, we have: \[ \lim_{x \to \infty} \frac{(1 + 0)(2 + 0)}{(1 + 0)(3 + 0)} = \frac{1 \cdot 2}{1 \cdot 3} = \frac{2}{3}. \] ### Final Answer The limit is \[ \frac{2}{3}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) ((x-1)/(x+1))^(2)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to oo) ((x+6)/(x+1))^(x+4)

Evaluate the following limits : Lim_(x to oo) ((x+6)/(x+1))^(x+4)

Evaluate the following limits : Lim_(x to 0) (3^(2x)-2^(3x))/x

Evaluate the following limits : lim_(x to 0) (3^(2x)-2^(3x))/x