Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo) [ x - sqrt((x^(2)+x))] `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \), we can follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ L = \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \] ### Step 2: Rationalize the expression To simplify the expression, we can multiply and divide by the conjugate: \[ L = \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \cdot \frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \] This gives us: \[ L = \lim_{x \to \infty} \frac{\left( x - \sqrt{x^2 + x} \right) \left( x + \sqrt{x^2 + x} \right)}{x + \sqrt{x^2 + x}} \] ### Step 3: Simplify the numerator Using the difference of squares in the numerator: \[ L = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}} \] ### Step 4: Simplify the denominator Now, simplify the denominator: \[ \sqrt{x^2 + x} = \sqrt{x^2(1 + \frac{1}{x})} = x\sqrt{1 + \frac{1}{x}} \] Thus, we can rewrite the denominator: \[ x + \sqrt{x^2 + x} = x + x\sqrt{1 + \frac{1}{x}} = x(1 + \sqrt{1 + \frac{1}{x}}) \] ### Step 5: Substitute back into the limit Substituting back into our limit expression: \[ L = \lim_{x \to \infty} \frac{-x}{x(1 + \sqrt{1 + \frac{1}{x}})} = \lim_{x \to \infty} \frac{-1}{1 + \sqrt{1 + \frac{1}{x}}} \] ### Step 6: Evaluate the limit As \( x \to \infty \), \( \frac{1}{x} \to 0 \): \[ L = \frac{-1}{1 + \sqrt{1 + 0}} = \frac{-1}{1 + 1} = \frac{-1}{2} \] ### Final Answer Thus, the limit is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to oo) sqrt(x^(2) +x-1) - x

Evaluate the following limits : Lim_( x to oo) (5x-6) /(sqrt(4x^(2)+9))

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to oo) ((x-1)/(x+1))^(2)

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : Lim_(x to 0) x/(2^(x))