Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo )( sqrt(x^(2)+5x+4)-sqrt(x^(2)-3x+4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \left( \sqrt{x^2 + 5x + 4} - \sqrt{x^2 - 3x + 4} \right), \] we can follow these steps: ### Step 1: Rationalize the expression We will rationalize the expression by multiplying and dividing by the conjugate: \[ \lim_{x \to \infty} \frac{\left( \sqrt{x^2 + 5x + 4} - \sqrt{x^2 - 3x + 4} \right) \left( \sqrt{x^2 + 5x + 4} + \sqrt{x^2 - 3x + 4} \right)}{\sqrt{x^2 + 5x + 4} + \sqrt{x^2 - 3x + 4}}. \] ### Step 2: Apply the difference of squares Using the difference of squares in the numerator: \[ \lim_{x \to \infty} \frac{(x^2 + 5x + 4) - (x^2 - 3x + 4)}{\sqrt{x^2 + 5x + 4} + \sqrt{x^2 - 3x + 4}}. \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ x^2 + 5x + 4 - x^2 + 3x - 4 = 8x. \] So, we have: \[ \lim_{x \to \infty} \frac{8x}{\sqrt{x^2 + 5x + 4} + \sqrt{x^2 - 3x + 4}}. \] ### Step 4: Factor out \(x\) from the square roots Next, we factor \(x^2\) out of the square roots: \[ \sqrt{x^2 + 5x + 4} = x\sqrt{1 + \frac{5}{x} + \frac{4}{x^2}}, \] \[ \sqrt{x^2 - 3x + 4} = x\sqrt{1 - \frac{3}{x} + \frac{4}{x^2}}. \] ### Step 5: Substitute back into the limit Now substitute these back into the limit: \[ \lim_{x \to \infty} \frac{8x}{x\left(\sqrt{1 + \frac{5}{x} + \frac{4}{x^2}} + \sqrt{1 - \frac{3}{x} + \frac{4}{x^2}}\right)}. \] ### Step 6: Cancel \(x\) The \(x\) in the numerator and denominator cancels out: \[ \lim_{x \to \infty} \frac{8}{\sqrt{1 + \frac{5}{x} + \frac{4}{x^2}} + \sqrt{1 - \frac{3}{x} + \frac{4}{x^2}}}. \] ### Step 7: Evaluate the limit As \(x \to \infty\), \(\frac{5}{x} \to 0\) and \(\frac{4}{x^2} \to 0\): \[ \lim_{x \to \infty} \frac{8}{\sqrt{1 + 0 + 0} + \sqrt{1 - 0 + 0}} = \frac{8}{1 + 1} = \frac{8}{2} = 4. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) sqrt(x^(2) +x-1) - x

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

Evaluate the following limits : Lim_(x to oo) (sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Evaluate the following limits : Lim_(x to oo) [ x - sqrt((x^(2)+x))]

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : Lim _( x to oo) sqrt(x)(sqrt(x+c)-sqrt(x))

Evaluate the following limits : Lim_( x to oo) (5x-6) /(sqrt(4x^(2)+9))

Evaluate the following limits : Lim_(x to 4) (3-sqrt((5+x)))/(x-4)

Evaluate the following limits : Lim_( xto 4) (3 - sqrt(5+x))/(x-4)

Evaluate the following limits : Lim_(x to 0) (sqrt(x+2)-sqrt(2))/x