Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} 2x(\sqrt{x^2 + 1} - x) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} 2x(\sqrt{x^2 + 1} - x) \] ### Step 2: Rationalize the expression To simplify \( \sqrt{x^2 + 1} - x \), we can multiply and divide by the conjugate \( \sqrt{x^2 + 1} + x \): \[ \lim_{x \to \infty} 2x \cdot \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x} \] This gives us: \[ \lim_{x \to \infty} 2x \cdot \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} 2x \cdot \frac{1}{\sqrt{x^2 + 1} + x} \] ### Step 3: Simplify the expression Now we simplify the limit: \[ \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + 1} + x} \] ### Step 4: Factor out \( x \) from the square root We can factor \( x \) out of the square root: \[ \sqrt{x^2 + 1} = x\sqrt{1 + \frac{1}{x^2}} \] Thus, the expression becomes: \[ \lim_{x \to \infty} \frac{2x}{x(\sqrt{1 + \frac{1}{x^2}} + 1)} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{1}{x^2}} + 1} \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{1}{x^2} \to 0 \): \[ \lim_{x \to \infty} \frac{2}{\sqrt{1 + 0} + 1} = \frac{2}{1 + 1} = \frac{2}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) sqrt(x^(2) +x-1) - x

Evaluate the following limits : Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))

Evaluate the following limits : Lim_(x to oo) (sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Evaluate the following limits : Lim_(x to oo) [ x - sqrt((x^(2)+x))]

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to oo )( sqrt(x^(2)+5x+4)-sqrt(x^(2)-3x+4))

Evaluate the following limits : Lim_( x to oo) (5x-6) /(sqrt(4x^(2)+9))

Evaluate the following limits : Lim_(xto0) (sqrt((1+x+x^(2)))-1)/x