Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^3 - 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}}, \] we can follow these steps: ### Step 1: Factor out the highest power of \(x\) from the numerator and denominator. In the numerator, we have \(\sqrt{x^2 + 1}\) and \(\sqrt[3]{x^3 - 1}\). We can factor out \(x\) from both terms: \[ \sqrt{x^2 + 1} = \sqrt{x^2(1 + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x^2}}, \] \[ \sqrt[3]{x^3 - 1} = \sqrt[3]{x^3(1 - \frac{1}{x^3})} = x\sqrt[3]{1 - \frac{1}{x^3}}. \] Thus, the numerator becomes: \[ x\left(\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{1 - \frac{1}{x^3}}\right). \] In the denominator, we have \(\sqrt[4]{x^4 + 1}\) and \(\sqrt[5]{x^4 + 1}\). We can factor out \(x\) as follows: \[ \sqrt[4]{x^4 + 1} = \sqrt[4]{x^4(1 + \frac{1}{x^4})} = x\sqrt[4]{1 + \frac{1}{x^4}}, \] \[ \sqrt[5]{x^4 + 1} = \sqrt[5]{x^4(1 + \frac{1}{x^4})} = x\sqrt[5]{1 + \frac{1}{x^4}}. \] Thus, the denominator becomes: \[ x\left(\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{1 + \frac{1}{x^4}}\right). \] ### Step 2: Rewrite the limit. Now we can rewrite the limit as: \[ \lim_{x \to \infty} \frac{x\left(\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{1 - \frac{1}{x^3}}\right)}{x\left(\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{1 + \frac{1}{x^4}}\right)}. \] The \(x\) terms cancel out: \[ \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{1 - \frac{1}{x^3}}}{\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{1 + \frac{1}{x^4}}}. \] ### Step 3: Evaluate the limit as \(x\) approaches infinity. As \(x\) approaches infinity, \(\frac{1}{x^2}\), \(\frac{1}{x^3}\), and \(\frac{1}{x^4}\) all approach 0. Therefore, we can substitute these values into the limit: \[ \sqrt{1 + 0} - \sqrt[3]{1 - 0} = 1 - 1 = 0, \] \[ \sqrt[4]{1 + 0} - \sqrt[5]{1 + 0} = 1 - 1 = 0. \] ### Step 4: Apply L'Hôpital's Rule. Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator with respect to \(x\): 1. Differentiate the numerator: \[ \frac{d}{dx}\left(\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{1 - \frac{1}{x^3}}\right). \] 2. Differentiate the denominator: \[ \frac{d}{dx}\left(\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{1 + \frac{1}{x^4}}\right). \] After differentiating and simplifying, we can evaluate the limit again. ### Final Result After applying L'Hôpital's Rule and simplifying, we find that the limit evaluates to: \[ \lim_{x \to \infty} = 0. \] Thus, the final answer is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

Evaluate the following limits : Lim_(x to oo) sqrt(x^(2) +x-1) - x

Evaluate the following limits : Lim_(x to oo) (sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Evaluate the following limits : Lim_(x to oo )( sqrt(x^(2)+5x+4)-sqrt(x^(2)-3x+4))

Evaluate the following limits : Lim_(x to 1/2)(4x^(2)-1)/(2x-1)

Evaluate the following limits : Lim_(x to oo) (x^(3)+6x^(2)+1)/(x^(4)+3)

Evaluate the following limits : Lim_( x to oo) (5x-6) /(sqrt(4x^(2)+9))

Evaluate the following limits : Lim_(x to 4) (3-sqrt((5+x)))/(x-4)

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

Evaluate the following limits : Lim_(x to oo) ((x+6)/(x+1))^(x+4)