Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0 ) (sin x^(@))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin x^\circ}{x} \), we can follow these steps: ### Step-by-Step Solution: 1. **Convert Degrees to Radians**: We know that \( \sin x^\circ \) can be expressed in terms of radians. The conversion from degrees to radians is given by: \[ \text{radians} = \frac{\pi}{180} \times \text{degrees} \] Therefore, we can rewrite \( \sin x^\circ \) as: \[ \sin x^\circ = \sin\left(\frac{\pi}{180} \cdot x\right) \] 2. **Rewrite the Limit**: Substitute the expression for \( \sin x^\circ \) into the limit: \[ \lim_{x \to 0} \frac{\sin x^\circ}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{\pi}{180} \cdot x\right)}{x} \] 3. **Factor Out the Constant**: We can factor out the constant \( \frac{\pi}{180} \) from the sine function: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi}{180} \cdot x\right)}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{\pi}{180} \cdot x\right)}{\frac{\pi}{180} \cdot x} \cdot \frac{\pi}{180} \] 4. **Use the Standard Limit**: We know that: \[ \lim_{u \to 0} \frac{\sin u}{u} = 1 \] In our case, let \( u = \frac{\pi}{180} \cdot x \). As \( x \to 0 \), \( u \to 0 \) as well. Thus, we can apply this limit: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi}{180} \cdot x\right)}{\frac{\pi}{180} \cdot x} = 1 \] 5. **Combine the Results**: Now, substituting back, we have: \[ \lim_{x \to 0} \frac{\sin x^\circ}{x} = 1 \cdot \frac{\pi}{180} = \frac{\pi}{180} \] ### Final Answer: Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin x^\circ}{x} = \frac{\pi}{180} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin 3x)/(5x)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim _(x to 0 ) x sin (1/x)

Evaluate the following limits : Lim_(x to 0) (sin^(2)x)/(2x)

Evaluate the following limits : Lim_( x to 0) e^(x)

Evaluate the following limits : Lim_(x to 0) (e^(sin x) - 1)/x

Evaluate the following limits : Lim_(x to 0) (3 sin x^(@) - sin 3x^(@))/(x^(3))

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x