Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0) (sin 2x (1- cos 2x))/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin(2x)(1 - \cos(2x))}{x^3}, \] we can follow these steps: ### Step 1: Rewrite the expression We can separate the limit into two parts: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} \cdot \lim_{x \to 0} \frac{1 - \cos(2x)}{x^2}. \] ### Step 2: Use the identity for \(1 - \cos(2x)\) Recall the trigonometric identity: \[ 1 - \cos(2x) = 2\sin^2(x). \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} \cdot \lim_{x \to 0} \frac{2\sin^2(x)}{x^2}. \] ### Step 3: Simplify the first limit For the first limit, we can rewrite \(\sin(2x)\) as: \[ \sin(2x) = 2\sin(x)\cos(x). \] Thus, we have: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} = \lim_{x \to 0} \frac{2\sin(x)\cos(x)}{x} = 2\lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \cos(x). \] Using the known limit \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1\) and \(\lim_{x \to 0} \cos(x) = 1\), we find: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} = 2 \cdot 1 \cdot 1 = 2. \] ### Step 4: Simplify the second limit Now, for the second limit: \[ \lim_{x \to 0} \frac{2\sin^2(x)}{x^2} = 2 \cdot \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right)^2. \] Again using the known limit: \[ \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right) = 1, \] we find: \[ \lim_{x \to 0} \frac{2\sin^2(x)}{x^2} = 2 \cdot 1^2 = 2. \] ### Step 5: Combine the results Now we combine both limits: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} \cdot \lim_{x \to 0} \frac{2\sin^2(x)}{x^2} = 2 \cdot 2 = 4. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(x to 0) (sin x cos x)/(3x)

Evaluate the following limits : Lim_(x to 0) x/(2^(x))

Evaluate the following limits : Lim_(x to 0) (sin 3x cos 2x)/(sin 2x)

Evaluate the following limits : Lim_(x to 0 ) (3 sin x - sin 3x)/(x^(3))

Evaluate the following limits : Lim _(x to 0 ) x sin (1/x)

Evaluate the following limits : Lim_(x to 0 ) (sin x^(@))/x

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x