Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0) (1- cos x)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{1 - \cos x}{x^2} \), we can follow these steps: ### Step 1: Use the identity for \( 1 - \cos x \) We know the trigonometric identity: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} \] ### Step 2: Rewrite the denominator Next, we can rewrite \( x^2 \) in terms of \( \left(\frac{x}{2}\right)^2 \): \[ x^2 = 4\left(\frac{x}{2}\right)^2 \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2} \] ### Step 3: Simplify the expression This simplifies to: \[ \lim_{x \to 0} \frac{2}{4} \cdot \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \] ### Step 4: Apply the limit property Using the limit property \( \lim_{u \to 0} \frac{\sin u}{u} = 1 \), where \( u = \frac{x}{2} \): \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} = 1 \] Thus, \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = 1 \] ### Step 5: Final calculation Putting it all together, we have: \[ \lim_{x \to 0} \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (1-cos 2x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (1-cos 4x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (1 - cos 6x)/x^2

Evaluate the following limits : Lim_( x to 0) e^(x)

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to 0) (sin x cos x)/(3x)

Evaluate the following limits : Lim_(x to 0 ) (1- cos ax)/(" x sin 3x")

Evaluate the following limits : Lim_(x to 0) (cos Ax - cos Bx)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x