Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0 ) (" cosec " x - cot x)/x `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\csc x - \cot x}{x} \), we can follow these steps: ### Step 1: Rewrite the functions Recall that: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: \[ \csc x - \cot x = \frac{1}{\sin x} - \frac{\cos x}{\sin x} = \frac{1 - \cos x}{\sin x} \] ### Step 2: Substitute into the limit Now, substitute this back into the limit: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \lim_{x \to 0} \frac{\frac{1 - \cos x}{\sin x}}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \] ### Step 3: Use the identity for \(1 - \cos x\) We know that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x \sin x} \] ### Step 4: Rewrite \( \sin x \) Using the double angle identity, we can express \( \sin x \) as: \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] Now substitute this into the limit: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x \cdot 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)} = \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{x \cos\left(\frac{x}{2}\right)} \] ### Step 5: Simplify the limit We can express \( x \) as \( 2 \cdot \frac{x}{2} \): \[ = \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2} \cdot 2 \cos\left(\frac{x}{2}\right)} = \frac{1}{2} \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \frac{1}{\cos\left(\frac{x}{2}\right)} \] ### Step 6: Evaluate the limit As \( x \to 0 \): \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} = 1 \quad \text{and} \quad \lim_{x \to 0} \cos\left(\frac{x}{2}\right) = 1 \] Thus, we have: \[ \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( x to 0) e^(x)

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to 0 ) (log x)/(cot x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) x/(2^(x))

Evaluate the following limits : Lim_( x to 0) ( cos mx - cos n x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (1 - cos 6x)/x^2

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x

Evaluate the following limits : Lim _(x to 0 ) x sin (1/x)