Home
Class 11
MATHS
Evaluate the following limits : Lim(th...

Evaluate the following limits :
`Lim_(theta to pi/2 ) (sec theta - tan theta )`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting \( \sec \theta \) and \( \tan \theta \) in terms of sine and cosine: \[ \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, we can express the limit as: \[ \sec \theta - \tan \theta = \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} = \frac{1 - \sin \theta}{\cos \theta} \] ### Step 2: Substitute the limit Now we substitute \( \theta \) approaching \( \frac{\pi}{2} \): \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{\cos \theta} \] ### Step 3: Evaluate the limit As \( \theta \) approaches \( \frac{\pi}{2} \): - \( \sin \theta \) approaches \( 1 \) - \( \cos \theta \) approaches \( 0 \) This gives us: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( 1 - \sin \theta \) is \( -\cos \theta \). - The derivative of the denominator \( \cos \theta \) is \( -\sin \theta \). Thus, we rewrite the limit: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{-\cos \theta}{-\sin \theta} = \lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\sin \theta} \] ### Step 5: Evaluate the new limit As \( \theta \) approaches \( \frac{\pi}{2} \): - \( \cos \theta \) approaches \( 0 \) - \( \sin \theta \) approaches \( 1 \) So we have: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\sin \theta} = \frac{0}{1} = 0 \] ### Final Answer Thus, the limit is: \[ \lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(theta to pi/2)(cot theta)/(pi/2 - theta )

Evaluate the following limits : Lim_(theta to pi/2 ) ((2theta-pi)/cos theta )

Evaluate the following limit : Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)

Evaluate the following limits : Lim_(theta to pi/2) (1-sin theta)/((pi/2-theta)cos theta)

Evaluate the following limits : Lim_(theta to 0 ) (sin^(3) a theta)/(sin^(2)b theta)

Evaluate the limits : Lim_(theta to pi/6) (cot^(2) theta - 3)/(" cosec " theta - 2)

Evaluate the following limit: (lim)_(theta->0)(sin3theta)/(t a n3theta)

Evaluate the following limit: (lim)_(theta->0)(sin3theta)/(tan2theta)

Evaluate the following limit: (lim)_(theta->0)(1-cos4theta)/(1-cos6theta)

Solve the following (1+cot theta -cosec theta )(1+tan theta +sec theta )