Home
Class 11
MATHS
Evaluate the following limit : Lim(the...

Evaluate the following limit :
`Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{\theta \to \frac{\pi}{4}} \frac{\sin \theta - \cos \theta}{\theta - \frac{\pi}{4}}, \] we can follow these steps: ### Step 1: Rewrite the Limit We rewrite the limit in terms of a new variable \( x \): Let \( x = \theta - \frac{\pi}{4} \). Then, as \( \theta \to \frac{\pi}{4} \), \( x \to 0 \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin\left(x + \frac{\pi}{4}\right) - \cos\left(x + \frac{\pi}{4}\right)}{x}. \] ### Step 2: Use Angle Addition Formulas Using the angle addition formulas for sine and cosine, we have: \[ \sin\left(x + \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4} \] \[ \cos\left(x + \frac{\pi}{4}\right) = \cos x \cos\frac{\pi}{4} - \sin x \sin\frac{\pi}{4}. \] Substituting these into the limit gives us: \[ \lim_{x \to 0} \frac{\left(\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}}\right) - \left(\cos x \cdot \frac{1}{\sqrt{2}} - \sin x \cdot \frac{1}{\sqrt{2}}\right)}{x}. \] ### Step 3: Simplify the Expression Now simplifying the numerator: \[ \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} - \cos x \cdot \frac{1}{\sqrt{2}} + \sin x \cdot \frac{1}{\sqrt{2}} = 2\sin x \cdot \frac{1}{\sqrt{2}}. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin x \cdot \frac{1}{\sqrt{2}}}{x}. \] ### Step 4: Apply the Limit We know that \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] So we can substitute this into our limit: \[ = 2 \cdot \frac{1}{\sqrt{2}} \cdot 1 = \frac{2}{\sqrt{2}} = \sqrt{2}. \] ### Final Answer Thus, the limit evaluates to: \[ \sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(theta to pi/2 ) ((2theta-pi)/cos theta )

Evaluate the following limits : Lim_(theta to pi/2 ) (sec theta - tan theta )

Evaluate the following limits : Lim_(theta to pi/2)(cot theta)/(pi/2 - theta )

Evaluate the following limits : Lim_(theta to pi/2) (1-sin theta)/((pi/2-theta)cos theta)

Evaluate the following limits : Lim_(theta to 0 ) (sin^(3) a theta)/(sin^(2)b theta)

Evaluate the following limit: (lim)_(theta->0)(1-cos4theta)/(1-cos6theta)

Evaluate the limits : Lim_(theta to pi/6) (cot^(2) theta - 3)/(" cosec " theta - 2)

Evaluate the following limit: (lim)_(theta->0)(sin3theta)/(tan2theta)

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is