Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to pi/4) (1- tan x)/(x - pi/4 )`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}} \), we will follow these steps: ### Step 1: Change of Variable Let \( \theta = x - \frac{\pi}{4} \). Then as \( x \to \frac{\pi}{4} \), \( \theta \to 0 \). We can rewrite \( x \) as \( \theta + \frac{\pi}{4} \). ### Step 2: Rewrite the Limit Now, substitute \( x \) in the limit: \[ \lim_{\theta \to 0} \frac{1 - \tan(\theta + \frac{\pi}{4})}{\theta} \] ### Step 3: Use the Tan Addition Formula Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] where \( A = \theta \) and \( B = \frac{\pi}{4} \), we have: \[ \tan(\theta + \frac{\pi}{4}) = \frac{\tan \theta + 1}{1 - \tan \theta} \] Substituting this back into the limit gives: \[ \lim_{\theta \to 0} \frac{1 - \frac{\tan \theta + 1}{1 - \tan \theta}}{\theta} \] ### Step 4: Simplify the Expression Now simplify the expression: \[ 1 - \frac{\tan \theta + 1}{1 - \tan \theta} = \frac{(1 - \tan \theta) - (\tan \theta + 1)}{1 - \tan \theta} = \frac{1 - \tan \theta - \tan \theta - 1}{1 - \tan \theta} = \frac{-2 \tan \theta}{1 - \tan \theta} \] Thus, the limit becomes: \[ \lim_{\theta \to 0} \frac{-2 \tan \theta}{\theta (1 - \tan \theta)} \] ### Step 5: Use the Limit Identity We know that \( \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1 \). Therefore: \[ \lim_{\theta \to 0} \frac{-2 \tan \theta}{\theta} = -2 \] And \( \lim_{\theta \to 0} (1 - \tan \theta) = 1 - 0 = 1 \). ### Step 6: Final Limit Calculation Putting it all together: \[ \lim_{\theta \to 0} \frac{-2 \tan \theta}{\theta (1 - \tan \theta)} = \frac{-2}{1} = -2 \] ### Final Answer Thus, the limit is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( xto pi/2) (1- sin x)/(x cos x)

Evaluate the following limits : Lim_(x to pi) (sin x )/(x - pi)

Evaluate the following limits : Lim_(x to 0) (tan ax )/(tan bx )

Evaluate the following limits : Lim_(x to 0) (tan. 1/2x)/(3x)

Evaluate the following limits : Lim_(x to 0) (1-cos 4x)/(x^(2))

Evaluate the following limits : lim _( xto pi) ( sin x)/(pi - x)

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

Evaluate the following limit: (lim)_(x->pi/4)(1-t a n x)/(x-pi/4)

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)

Evaluate the following limits : Lim_(xto oo) x tan (1/x)