Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to oo) sqrt(((x+sin x)/(x- cos x)))` is equal to

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} \] ### Step 2: Divide numerator and denominator by \( x \) To simplify the expression, we divide both the numerator and the denominator by \( x \): \[ = \lim_{x \to \infty} \sqrt{\frac{\frac{x}{x} + \frac{\sin x}{x}}{\frac{x}{x} - \frac{\cos x}{x}}} \] This simplifies to: \[ = \lim_{x \to \infty} \sqrt{\frac{1 + \frac{\sin x}{x}}{1 - \frac{\cos x}{x}}} \] ### Step 3: Evaluate the limits of \( \frac{\sin x}{x} \) and \( \frac{\cos x}{x} \) As \( x \) approaches infinity, both \( \frac{\sin x}{x} \) and \( \frac{\cos x}{x} \) approach 0: \[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{\cos x}{x} = 0 \] ### Step 4: Substitute the limits into the expression Substituting these limits back into our expression gives: \[ = \sqrt{\frac{1 + 0}{1 - 0}} = \sqrt{\frac{1}{1}} = \sqrt{1} \] ### Step 5: Final result Thus, we find: \[ \sqrt{1} = 1 \] Therefore, the limit is: \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to oo) sqrt(x^(2) +x-1) - x

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : Lim_(x to a) (sqrt(x)-sqrt(a))/(x-a)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_( x to 0) (x^(3) cos x)/( 1 - cos x)