Home
Class 11
MATHS
Evaluate the limits : Lim(theta to pi...

Evaluate the limits :
`Lim_(theta to pi/6) (cot^(2) theta - 3)/(" cosec " theta - 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{\theta \to \frac{\pi}{6}} \frac{\cot^2 \theta - 3}{\csc \theta - 2} \] we will follow these steps: ### Step 1: Rewrite cotangent and cosecant in terms of sine and cosine The cotangent and cosecant functions can be rewritten as follows: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] Thus, \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] ### Step 2: Substitute the values into the limit expression Substituting these into the limit gives: \[ \lim_{\theta \to \frac{\pi}{6}} \frac{\frac{\cos^2 \theta}{\sin^2 \theta} - 3}{\frac{1}{\sin \theta} - 2} \] ### Step 3: Evaluate the limit directly Now, we can evaluate the trigonometric functions at \(\theta = \frac{\pi}{6}\): \[ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin \frac{\pi}{6} = \frac{1}{2} \] Substituting these values gives: \[ \cot^2 \frac{\pi}{6} = \left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right)^2 = \left(\sqrt{3}\right)^2 = 3 \] Thus, \[ \cot^2 \frac{\pi}{6} - 3 = 3 - 3 = 0 \] And for cosecant: \[ \csc \frac{\pi}{6} = \frac{1}{\frac{1}{2}} = 2 \] So, \[ \csc \frac{\pi}{6} - 2 = 2 - 2 = 0 \] ### Step 4: Apply L'Hôpital's Rule Since both the numerator and denominator approach \(0\), we can apply L'Hôpital's Rule: \[ \lim_{\theta \to \frac{\pi}{6}} \frac{\frac{d}{d\theta}(\cot^2 \theta - 3)}{\frac{d}{d\theta}(\csc \theta - 2)} \] ### Step 5: Differentiate the numerator and denominator The derivative of the numerator: \[ \frac{d}{d\theta}(\cot^2 \theta) = 2 \cot \theta (-\csc^2 \theta) = -2 \cot \theta \csc^2 \theta \] The derivative of the denominator: \[ \frac{d}{d\theta}(\csc \theta) = -\csc \theta \cot \theta \] ### Step 6: Substitute back into the limit Now substituting back into the limit: \[ \lim_{\theta \to \frac{\pi}{6}} \frac{-2 \cot \theta \csc^2 \theta}{-\csc \theta \cot \theta} \] This simplifies to: \[ \lim_{\theta \to \frac{\pi}{6}} 2 \csc \theta \] ### Step 7: Evaluate the limit Now substituting \(\theta = \frac{\pi}{6}\): \[ \csc \frac{\pi}{6} = 2 \] Thus, \[ 2 \cdot 2 = 4 \] ### Final Answer Therefore, the limit is \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(theta to pi/2 ) ((2theta-pi)/cos theta )

Evaluate the following limits : Lim_(theta to pi/2)(cot theta)/(pi/2 - theta )

Evaluate the following limits : Lim_(theta to pi/2 ) (sec theta - tan theta )

Evaluate the following limit : Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)

Evaluate the following limits : Lim_(theta to 0 ) (sin^(3) a theta)/(sin^(2)b theta)

Evaluate the following limits : Lim_(theta to pi/2) (1-sin theta)/((pi/2-theta)cos theta)

Prove that 1+cot^(2) theta = cosec^(2) theta

Solve cot theta + "cosec" theta =sqrt(3)

Given : 4 sin theta = 3 cos theta , find the value of : (i) sin theta (ii) cos theta (iii) cot^(2) theta - "cosec"^(2) theta (iv) 4 cos^(2) theta - 3 sin^(2) theta + 2

Evaluate the following limit: (lim)_(theta->0)(1-cos4theta)/(1-cos6theta)