Home
Class 11
MATHS
If Lim( theta to 0) k theta cosec theta ...

If `Lim_( theta to 0) k theta cosec theta = Lim_( theta to 0) theta cosec k theta , ` prove that k must be ` pm 1 ` :

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( k \) must be \( \pm 1 \) given the equation \[ \lim_{\theta \to 0} k \theta \csc \theta = \lim_{\theta \to 0} \theta \csc(k \theta), \] we will follow these steps: ### Step 1: Rewrite the limits using the definition of cosecant Recall that \( \csc \theta = \frac{1}{\sin \theta} \). Thus, we can rewrite the limits as: \[ \lim_{\theta \to 0} k \theta \cdot \frac{1}{\sin \theta} = \lim_{\theta \to 0} \theta \cdot \frac{1}{\sin(k \theta)}. \] This simplifies to: \[ \lim_{\theta \to 0} \frac{k \theta}{\sin \theta} = \lim_{\theta \to 0} \frac{\theta}{\sin(k \theta)}. \] ### Step 2: Use the limit property of sine We know that \[ \lim_{\theta \to 0} \frac{\sin x}{x} = 1. \] Thus, we can express our limits in terms of this property: \[ \lim_{\theta \to 0} \frac{k \theta}{\sin \theta} = k \cdot \lim_{\theta \to 0} \frac{\theta}{\sin \theta} = k \cdot 1 = k, \] and for the right side: \[ \lim_{\theta \to 0} \frac{\theta}{\sin(k \theta)} = \lim_{\theta \to 0} \frac{1}{k} \cdot \frac{k \theta}{\sin(k \theta)} = \frac{1}{k} \cdot 1 = \frac{1}{k}. \] ### Step 3: Set the limits equal to each other Now we have: \[ k = \frac{1}{k}. \] ### Step 4: Solve for \( k \) Multiplying both sides by \( k \) (assuming \( k \neq 0 \)) gives: \[ k^2 = 1. \] Taking the square root of both sides results in: \[ k = \pm 1. \] ### Conclusion Thus, we have proven that \( k \) must be \( \pm 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Prove that cot 2 theta + tan theta = cosec 2 theta

(b) cosec theta=1+cot theta

(b) cosec theta=1+cot theta

Prove that cos^2 theta cosec theta+sin theta=cosec theta

Solve cot theta + tan theta=2 cosec theta .

find the value sin^(2)theta*cosec theta =?

If sintheta+cosec theta=2 , then sin^(2)theta+cosec ^(2)theta is equal to

If sin theta+ cosec theta =2, then the value of sin^8 theta + cosec^8 theta is equal to

Solve the following (1+cot theta -cosec theta )(1+tan theta +sec theta )

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta