Home
Class 11
MATHS
Evaluate : lim(xto0) (1+ax)^(1//x)...

Evaluate :
`lim_(xto0) (1+ax)^(1//x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} (1 + ax)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Define the limit Let \( y = \lim_{x \to 0} (1 + ax)^{\frac{1}{x}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we get: \[ \log y = \log \left( \lim_{x \to 0} (1 + ax)^{\frac{1}{x}} \right) \] Using the property of logarithms, we can bring the exponent down: \[ \log y = \lim_{x \to 0} \frac{1}{x} \log(1 + ax) \] ### Step 3: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator \( \log(1 + ax) \) and the denominator \( x \) approach 0. Therefore, we can apply L'Hôpital's Rule: \[ \log y = \lim_{x \to 0} \frac{\frac{d}{dx} \log(1 + ax)}{\frac{d}{dx} x} \] ### Step 4: Differentiate the numerator and denominator The derivative of \( \log(1 + ax) \) is: \[ \frac{d}{dx} \log(1 + ax) = \frac{a}{1 + ax} \] The derivative of \( x \) is simply \( 1 \). Thus, we have: \[ \log y = \lim_{x \to 0} \frac{a}{1 + ax} \] ### Step 5: Evaluate the limit Now we can evaluate the limit: \[ \log y = \frac{a}{1 + a \cdot 0} = \frac{a}{1} = a \] ### Step 6: Solve for \( y \) Now, we exponentiate both sides to solve for \( y \): \[ y = e^{\log y} = e^a \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate lim_(xto0) (10^(x)-2^(x)-5^(x)+1)/(xtanx).

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x) .