Home
Class 11
MATHS
Evaluate : lim(x to 0) (e^(x)-1)/x...

Evaluate :
`lim_(x to 0) (e^(x)-1)/x `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{e^x - 1}{x} \), we can use the series expansion of \( e^x \). ### Step-by-Step Solution: 1. **Recall the series expansion of \( e^x \)**: The series expansion for \( e^x \) is given by: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] 2. **Substitute the series into the limit**: We can substitute this series into our limit: \[ \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots\right) - 1}{x} \] 3. **Simplify the expression**: The \( +1 \) and \( -1 \) cancel each other out: \[ = \lim_{x \to 0} \frac{\frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}{x} \] 4. **Factor out \( x \)**: Dividing each term in the numerator by \( x \): \[ = \lim_{x \to 0} \left(\frac{x}{x \cdot 1!} + \frac{x^2}{x \cdot 2!} + \frac{x^3}{x \cdot 3!} + \ldots\right) \] This simplifies to: \[ = \lim_{x \to 0} \left(\frac{1}{1!} + \frac{x}{2!} + \frac{x^2}{3!} + \ldots\right) \] 5. **Evaluate the limit**: As \( x \to 0 \), all terms containing \( x \) will approach 0: \[ = \frac{1}{1!} + 0 + 0 + \ldots = 1 \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate : lim_(x to 0) (e^(cos x)-1)/(cos x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate : lim_(xto8)(e^(x)-e^(8))/(x-8)

Using L. Hospital.s rule, evaluate: lim _(x to 0) "" (x e ^(x) -log ( 1 + x ))/( x ^(2))

Evaluate: lim_(x to 0^+)((e^(xln(2^(x-1)))-(2^x-1)^xsinx)/(e^(x lnx)))^(1/x)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)