Home
Class 11
MATHS
Evaluate : lim(xto 0 ) ((x+2)/(x+1))^(...

Evaluate :
`lim_(xto 0 ) ((x+2)/(x+1))^(x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \left(\frac{x+2}{x+1}\right)^{x+3}, \] we can follow these steps: ### Step 1: Substitute \( x = 0 \) We start by substituting \( x = 0 \) into the expression: \[ \frac{x+2}{x+1} \text{ becomes } \frac{0+2}{0+1} = \frac{2}{1} = 2. \] ### Step 2: Substitute \( x = 0 \) in the exponent Next, we substitute \( x = 0 \) into the exponent \( x + 3 \): \[ x + 3 \text{ becomes } 0 + 3 = 3. \] ### Step 3: Combine the results Now we can combine the results from Step 1 and Step 2: \[ \left(\frac{x+2}{x+1}\right)^{x+3} \text{ becomes } 2^3. \] ### Step 4: Calculate \( 2^3 \) Finally, we calculate \( 2^3 \): \[ 2^3 = 8. \] ### Final Answer Thus, the limit is \[ \lim_{x \to 0} \left(\frac{x+2}{x+1}\right)^{x+3} = 8. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate : lim_(xto 0)(3^(x)-2^(x))/(tanx)

Evaluate : lim_(xto 0) (10^(x) - 2^(x) -5^(x)+1)/(sin^(2)x)

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

Evaluate lim_(xto0) (logcosx)/(x)