Home
Class 11
MATHS
Evaluate : lim(x to 0) (e^(cos x)-1)/(...

Evaluate :
`lim_(x to 0) (e^(cos x)-1)/(cos x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{e^{\cos x} - 1}{\cos x} \), we can follow these steps: ### Step 1: Substitute \( x = 0 \) We start by substituting \( x = 0 \) into the expression. \[ \cos(0) = 1 \] So, we have: \[ \lim_{x \to 0} \frac{e^{\cos x} - 1}{\cos x} = \frac{e^{\cos(0)} - 1}{\cos(0)} = \frac{e^1 - 1}{1} \] ### Step 2: Simplify the expression Now, we simplify the expression: \[ \frac{e - 1}{1} = e - 1 \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^{\cos x} - 1}{\cos x} = e - 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (cos 2x-1)/(cos x-1)

Evaluate : lim_(x to 0) (e^(x)-1)/x

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

Evaluate lim_(x to 0) (x^(3) cot x)/(1 - cos x)

lim_(x to 0) (cos x)/(pi-x)

Evaluate lim_(x to 0) (1 - cos ax)/(1 - cos bx)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)