Home
Class 11
MATHS
Evaluate : lim(xto 0) (10^(x) - 2^(x) ...

Evaluate :
`lim_(xto 0) (10^(x) - 2^(x) -5^(x)+1)/(sin^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{10^x - 2^x - 5^x + 1}{\sin^2 x}, \] we will follow a step-by-step approach. ### Step 1: Rewrite the expression We start with the limit expression: \[ \lim_{x \to 0} \frac{10^x - 2^x - 5^x + 1}{\sin^2 x}. \] ### Step 2: Use properties of exponents We can express \(10^x\) as \(2^x \cdot 5^x\): \[ 10^x - 2^x - 5^x + 1 = 2^x \cdot 5^x - 2^x - 5^x + 1. \] ### Step 3: Factor the numerator Now, we can factor out \(2^x\) from the first two terms: \[ = 2^x (5^x - 1) - (5^x - 1). \] This can be rewritten as: \[ = (2^x - 1)(5^x - 1). \] ### Step 4: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{(2^x - 1)(5^x - 1)}{\sin^2 x}. \] ### Step 5: Apply limit properties We know from limit properties that: \[ \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(2^x - 1)}{x} \cdot \frac{(5^x - 1)}{x} \cdot \frac{x^2}{\sin^2 x}. \] ### Step 6: Evaluate each limit Now we can evaluate each part separately: 1. \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2\), 2. \(\lim_{x \to 0} \frac{5^x - 1}{x} = \ln 5\), 3. \(\lim_{x \to 0} \frac{x^2}{\sin^2 x} = 1\). ### Step 7: Combine the results Combining these results, we have: \[ \lim_{x \to 0} \frac{(2^x - 1)(5^x - 1)}{\sin^2 x} = \ln 2 \cdot \ln 5 \cdot 1 = \ln 2 \cdot \ln 5. \] ### Final Answer Thus, the final answer is: \[ \lim_{x \to 0} \frac{10^x - 2^x - 5^x + 1}{\sin^2 x} = \ln 2 \cdot \ln 5. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (10^(x)-2^(x)-5^(x)+1)/(xtanx).

Evaluate : lim_(xto 0)(3^(x)-2^(x))/(tanx)

Evaluate lim_(xto0)((ab)^(x)-a^(x)-b^(x)+1)/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(xto0)x^(3)"cos"2/x .