Home
Class 11
MATHS
Use the formula Lim(xto 0) (a^(x)-1)/x =...

Use the formula `Lim_(xto 0) (a^(x)-1)/x = log_(e)a " to find " Lim_(xto0) (2^(x)-1)/((1+x)^(1//2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} \) using the formula \( \lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a \), we will follow these steps: ### Step 1: Identify the limit expression We need to evaluate: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} \] ### Step 2: Apply the formula for the numerator Using the formula, we know: \[ \lim_{x \to 0} \frac{2^x - 1}{x} = \log_e 2 \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = \lim_{x \to 0} \frac{2^x - 1}{x} \cdot \frac{x}{\sqrt{1+x} - 1} \] ### Step 3: Simplify the denominator We need to simplify the expression \( \sqrt{1+x} - 1 \). We can multiply and divide by the conjugate: \[ \sqrt{1+x} - 1 = \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{\sqrt{1+x} + 1} = \frac{1+x - 1}{\sqrt{1+x} + 1} = \frac{x}{\sqrt{1+x} + 1} \] ### Step 4: Substitute back into the limit Now we can substitute this back into our limit: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = \lim_{x \to 0} \frac{2^x - 1}{x} \cdot \frac{x}{\frac{x}{\sqrt{1+x} + 1}} = \lim_{x \to 0} \frac{2^x - 1}{x} \cdot (\sqrt{1+x} + 1) \] ### Step 5: Evaluate the limit Now we can evaluate the limit: 1. From the earlier step, we know: \[ \lim_{x \to 0} \frac{2^x - 1}{x} = \log_e 2 \] 2. For \( \sqrt{1+x} + 1 \): \[ \lim_{x \to 0} (\sqrt{1+x} + 1) = \sqrt{1+0} + 1 = 1 + 1 = 2 \] ### Step 6: Combine the results Now we combine the results: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = \log_e 2 \cdot 2 = 2 \log_e 2 \] ### Final Answer Thus, the final answer is: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = 2 \log_e 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Evaluate Lim_(xto0) ((1+x)^(6)-1)/((1+x)^(2)-1)

Evaluate: ("lim")(xto0)(2^x-1)/((1+x)^(1/2)-1)

Find lim_(xto0)(cot^(-1)(1/x))/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

(ii) lim_(xto0) ((1+x)^3-(1-x)^3)/x