Home
Class 11
MATHS
Find the limit of the function f(x) if ,...

Find the limit of the function f(x) if , it exists , defined as follows : `f(x) = (e^(1//x)-1)/(e^(1//x)+1) , x != 0 ` as x tends to zero .

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1} \) as \( x \) tends to 0, we can follow these steps: ### Step 1: Analyze the limit We need to evaluate: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1} \] As \( x \) approaches 0, \( \frac{1}{x} \) approaches \( \infty \) (from the right side, since \( x \) is positive). Therefore, \( e^{\frac{1}{x}} \) approaches \( \infty \). ### Step 2: Substitute the limit Substituting \( e^{\frac{1}{x}} \) into the limit gives: \[ \lim_{x \to 0} \frac{\infty - 1}{\infty + 1} = \frac{\infty}{\infty} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule L'Hôpital's Rule states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can differentiate the numerator and the denominator separately. Differentiate the numerator: \[ \text{Numerator: } \frac{d}{dx}(e^{\frac{1}{x}} - 1) = e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) = -\frac{e^{\frac{1}{x}}}{x^2} \] Differentiate the denominator: \[ \text{Denominator: } \frac{d}{dx}(e^{\frac{1}{x}} + 1) = e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) = -\frac{e^{\frac{1}{x}}}{x^2} \] ### Step 4: Rewrite the limit using derivatives Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{-\frac{e^{\frac{1}{x}}}{x^2}}{-\frac{e^{\frac{1}{x}}}{x^2}} = \lim_{x \to 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}} = 1 \] ### Conclusion Thus, the limit exists and is equal to: \[ \lim_{x \to 0} f(x) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Range of the f(x) = (e^(x) - 1)/(e^(x) + 1)

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

Find the inverse of the function: f : [ − 1 , 1 ] → [ − 1 , 1 ] is defined by f ( x ) = x | x |

If the function f:[1,∞)→[1,∞) is defined by f(x)=2 ^(x(x-1)) then f^-1(x) is

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|