Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0 ) (1-cosmx)/(1- cos nx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)}, \] we can use the trigonometric identity that relates \(1 - \cos \theta\) to \(\sin^2\) as follows: \[ 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right). \] ### Step 1: Apply the identity Using the identity, we can rewrite the limit: \[ 1 - \cos(mx) = 2 \sin^2\left(\frac{mx}{2}\right) \quad \text{and} \quad 1 - \cos(nx) = 2 \sin^2\left(\frac{nx}{2}\right). \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{mx}{2}\right)}{2 \sin^2\left(\frac{nx}{2}\right)} = \lim_{x \to 0} \frac{\sin^2\left(\frac{mx}{2}\right)}{\sin^2\left(\frac{nx}{2}\right)}. \] ### Step 2: Simplify the limit We can further simplify this limit by rewriting it in terms of \(x\): \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{mx}{2}\right)}{\sin^2\left(\frac{nx}{2}\right)} = \lim_{x \to 0} \left(\frac{\sin\left(\frac{mx}{2}\right)}{\frac{mx}{2}} \cdot \frac{mx}{2}\right)^2 \cdot \left(\frac{\frac{nx}{2}}{\sin\left(\frac{nx}{2}\right)}\right)^2. \] ### Step 3: Use the standard limit Using the standard limit \(\lim_{u \to 0} \frac{\sin u}{u} = 1\), we can rewrite the limit: \[ = \left(\lim_{x \to 0} \frac{\sin\left(\frac{mx}{2}\right)}{\frac{mx}{2}}\right)^2 \cdot \left(\lim_{x \to 0} \frac{n^2x^2/4}{\sin^2\left(\frac{nx}{2}\right)}\right)^{-1}. \] ### Step 4: Evaluate the limits Now, applying the limits: 1. \(\lim_{x \to 0} \frac{\sin\left(\frac{mx}{2}\right)}{\frac{mx}{2}} = 1\) 2. \(\lim_{x \to 0} \frac{\sin\left(\frac{nx}{2}\right)}{\frac{nx}{2}} = 1\) Thus, we have: \[ = \left(1\right)^2 \cdot \frac{m^2}{n^2} = \frac{m^2}{n^2}. \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)} = \frac{m^2}{n^2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(A)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (1 - cos 6x)/x^2

Evaluate the following limits : Lim_(x to 0) (1-cos 4x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (1-cos 2x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (1- cos x)/(x^(2))

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_( x to 0) (x^(3) cos x)/( 1 - cos x)

Evaluate the following limits : Lim_( x to 0) (x^(2))/(1- cos x)

Evaluate the following limits : Lim_(x to 0 ) (1- cos ax)/(" x sin 3x")

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to 0) (1+ax)^(b/x)