Home
Class 11
MATHS
If f(x){:{(x^(2)+4," for "x lt 2 ),(x^(3...

If f(x)`{:{(x^(2)+4," for "x lt 2 ),(x^(3)," for " x gt 2 ):}` , find `Lim_(x to 2) f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 2, we need to evaluate the left-hand limit and the right-hand limit separately. Given: \[ f(x) = \begin{cases} x^2 + 4 & \text{for } x < 2 \\ x^3 & \text{for } x > 2 \end{cases} \] ### Step 1: Find the Left-Hand Limit We need to find: \[ \lim_{x \to 2^-} f(x) \] Since \( x \) is approaching 2 from the left, we use the expression for \( f(x) \) when \( x < 2 \): \[ f(x) = x^2 + 4 \] Thus, \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2} (x^2 + 4) \] Substituting \( x = 2 \): \[ = 2^2 + 4 = 4 + 4 = 8 \] ### Step 2: Find the Right-Hand Limit Next, we find: \[ \lim_{x \to 2^+} f(x) \] Since \( x \) is approaching 2 from the right, we use the expression for \( f(x) \) when \( x > 2 \): \[ f(x) = x^3 \] Thus, \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2} (x^3) \] Substituting \( x = 2 \): \[ = 2^3 = 8 \] ### Step 3: Compare the Limits Now we compare the left-hand limit and the right-hand limit: \[ \lim_{x \to 2^-} f(x) = 8 \quad \text{and} \quad \lim_{x \to 2^+} f(x) = 8 \] Since both limits are equal, we can conclude: \[ \lim_{x \to 2} f(x) = 8 \] ### Final Answer Thus, the limit of \( f(x) \) as \( x \) approaches 2 is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(C)|15 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

f(x){{:(x^(3) - 3"," if x le 2 ),(x^(2) + 1"," if x gt 2 ):} Check continuity of f(x) at x = 2

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

For the function f(x) = 2 . Find lim_(x to 1) f(x)

The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is

If f(x) = (x^(2)-9)/(x-3) , find it Lim_(x to 3) f(x) exists .

For the function f(x) = 4x . Find lim_(x to 2) f (x)

If f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).

If f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):} , then find int_(2)^(5) f(x) dx .

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =