Home
Class 11
MATHS
If f(x) = {:{(x/(|x|)" for "x != 0 ),(0 ...

If f(x) = `{:{(x/(|x|)" for "x != 0 ),(0 " for " x = 0 ):}` , find `Lim_(x to 0 ) f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 0, we will evaluate the left-hand limit and the right-hand limit separately. Given: \[ f(x) = \begin{cases} \frac{x}{|x|} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases} \] ### Step 1: Find the Left-Hand Limit as \( x \) approaches 0 We denote the left-hand limit as: \[ \lim_{x \to 0^-} f(x) \] For \( x \) approaching 0 from the left, we can substitute \( x = -h \) where \( h \to 0^+ \). Thus, we have: \[ \lim_{x \to 0^-} f(x) = \lim_{h \to 0^+} f(-h) \] Now substituting into the function: \[ f(-h) = \frac{-h}{|-h|} = \frac{-h}{h} = -1 \] Thus, the left-hand limit is: \[ \lim_{x \to 0^-} f(x) = -1 \] ### Step 2: Find the Right-Hand Limit as \( x \) approaches 0 Now we denote the right-hand limit as: \[ \lim_{x \to 0^+} f(x) \] For \( x \) approaching 0 from the right, we can substitute \( x = h \) where \( h \to 0^+ \). Thus, we have: \[ \lim_{x \to 0^+} f(x) = \lim_{h \to 0^+} f(h) \] Now substituting into the function: \[ f(h) = \frac{h}{|h|} = \frac{h}{h} = 1 \] Thus, the right-hand limit is: \[ \lim_{x \to 0^+} f(x) = 1 \] ### Step 3: Compare the Left-Hand Limit and Right-Hand Limit Now we compare the two limits: - Left-hand limit: \( -1 \) - Right-hand limit: \( 1 \) Since the left-hand limit and right-hand limit are not equal: \[ \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x) \] ### Conclusion Since the left-hand limit and right-hand limit are not equal, we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(C)|15 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

Does Lim_(x to 0 ) f(x) exist if f(x) = {:{(x," when "x lt 0 ),(0 ," when " x = 0 ),(x^(2)," when " x gt 0):}

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

If f(x)={(3x+2,"when "x ne0),(0,"when "x =0):}} , what does lim_(x to 0)f(x) equal ?

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Let f(x) = {{:((cos x-e^(x^(2)//2))/(x^(3))",",x ne 0),(0",",x = 0):} , then Statement I f(x) is continuous at x = 0. Statement II lim_(x to 0 )(cos x-e^(x^(2)//2))/(x^(3)) = - (1)/(12)

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is