Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
`Lim_(x to 0) (sqrt(1+x)-1)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \), we can follow these steps: ### Step 1: Identify the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \] ### Step 2: Multiply by the conjugate To simplify the expression, we can multiply the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{1+x} + 1 \): \[ \lim_{x \to 0} \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{x(\sqrt{1+x} + 1)} \] ### Step 3: Apply the difference of squares Using the difference of squares formula \( a^2 - b^2 = (a-b)(a+b) \), we can simplify the numerator: \[ \sqrt{1+x} - 1 = \frac{(1+x) - 1^2}{\sqrt{1+x} + 1} = \frac{x}{\sqrt{1+x} + 1} \] Thus, we rewrite the limit: \[ \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} \] ### Step 4: Cancel the \( x \) terms The \( x \) in the numerator and denominator cancels out: \[ \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} \] ### Step 5: Substitute \( x = 0 \) Now we can substitute \( x = 0 \) into the limit: \[ \frac{1}{\sqrt{1+0} + 1} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \frac{1}{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(C)|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (e^(sin x) - 1)/x

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt((1+x^(2))))/x

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

Evaluate the following limits : Lim_( x to 0 ) x/(sqrt((x+1)-1))

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to 0) ((1+x)^(n)-1)/x

Evaluate the following limits . Lim_(x to 0 ) ((1+x)^(n)-1)/x

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_( xto 0) (sqrt(1+x) -sqrt(1-x))/(2x)

Evaluate the following limits : lim_( x to 0 ) (sqrt(1+ax) - sqrt(1-ax))/x