Home
Class 11
MATHS
Evaluate the following limits : Lim( x...

Evaluate the following limits :
`Lim_( xto 0) (sqrt(1+x) -sqrt(1-x))/(2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{2x}, \] we can follow these steps: ### Step 1: Multiply by the Conjugate We will multiply the numerator and the denominator by the conjugate of the numerator, which is \(\sqrt{1+x} + \sqrt{1-x}\). \[ \lim_{x \to 0} \frac{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{1+x} + \sqrt{1-x})}{2x(\sqrt{1+x} + \sqrt{1-x})} \] ### Step 2: Simplify the Numerator Using the difference of squares formula \(a^2 - b^2 = (a-b)(a+b)\), we can simplify the numerator: \[ \sqrt{1+x}^2 - \sqrt{1-x}^2 = (1+x) - (1-x) = x + x = 2x. \] Thus, we have: \[ \lim_{x \to 0} \frac{2x}{2x(\sqrt{1+x} + \sqrt{1-x})}. \] ### Step 3: Cancel Out Common Factors Now we can cancel \(2x\) in the numerator and denominator: \[ \lim_{x \to 0} \frac{1}{\sqrt{1+x} + \sqrt{1-x}}. \] ### Step 4: Substitute \(x = 0\) Now, we can substitute \(x = 0\) into the limit: \[ \frac{1}{\sqrt{1+0} + \sqrt{1-0}} = \frac{1}{\sqrt{1} + \sqrt{1}} = \frac{1}{1 + 1} = \frac{1}{2}. \] ### Final Answer Thus, the limit is \[ \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(C)|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_( x to 0 ) (sqrt(1+ax) - sqrt(1-ax))/x

Evaluate the following limits : Lim_(x to 0) (sqrt(1+x)-1)/x

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x

Evaluate the following limits : Lim_(x to 0) (sqrt(x+2)-sqrt(2))/x

Evaluate the following limits : Lim_(h to 0 ) ([sqrt(x+h)-sqrt(x)])/h

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt((1+x^(2))))/x

Evaluate the following limits : Lim_(x to a) (sqrt(x)-sqrt(a))/(x-a)

Evaluate the following limits : Lim_(xto 0 ) (sqrt((1+x^(3)))-sqrt((1-x^(3))))/(x^(2))

Evaluate the following limits : Lim_(x to 0) (e^(x) -1)/(sqrt(1-cos x))