Home
Class 11
MATHS
Evaluate the following limits : Lim(x ...

Evaluate the following limits :
` Lim_(x to oo) sqrt(x^(2) +x-1) - x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} \left( \sqrt{x^2 + x - 1} - x \right) \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x - 1} - x \right) \] ### Step 2: Rationalize the Expression To simplify the expression, we multiply by the conjugate: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x - 1} - x \right) \cdot \frac{\sqrt{x^2 + x - 1} + x}{\sqrt{x^2 + x - 1} + x} \] ### Step 3: Simplify the Numerator Using the difference of squares: \[ \lim_{x \to \infty} \frac{(\sqrt{x^2 + x - 1})^2 - x^2}{\sqrt{x^2 + x - 1} + x} \] This simplifies to: \[ \lim_{x \to \infty} \frac{x^2 + x - 1 - x^2}{\sqrt{x^2 + x - 1} + x} \] which further simplifies to: \[ \lim_{x \to \infty} \frac{x - 1}{\sqrt{x^2 + x - 1} + x} \] ### Step 4: Factor Out \( x \) in the Denominator In the denominator, we factor out \( x \): \[ \sqrt{x^2 + x - 1} = \sqrt{x^2(1 + \frac{1}{x} - \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x} - \frac{1}{x^2}} \] Thus, the limit becomes: \[ \lim_{x \to \infty} \frac{x - 1}{x(\sqrt{1 + \frac{1}{x} - \frac{1}{x^2}} + 1)} \] ### Step 5: Simplify the Limit Now we can cancel \( x \) in the numerator and denominator: \[ \lim_{x \to \infty} \frac{1 - \frac{1}{x}}{\sqrt{1 + \frac{1}{x} - \frac{1}{x^2}} + 1} \] ### Step 6: Evaluate the Limit as \( x \to \infty \) As \( x \to \infty \), \( \frac{1}{x} \to 0 \): \[ \frac{1 - 0}{\sqrt{1 + 0 - 0} + 1} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x - 1} - x \right) = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

Evaluate the following limits : Lim_(x to oo) (sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))

Evaluate the following limits : Lim_(x to oo )( sqrt(x^(2)+5x+4)-sqrt(x^(2)-3x+4))

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : Lim_(x to oo) [ x - sqrt((x^(2)+x))]

Evaluate the following limits : Lim_(x to 0) (sqrt(1+x)-1)/x