Home
Class 11
MATHS
Evaluate the following limits : Lim(n t...

Evaluate the following limits :
`Lim_(n to oo) (1+2+3+...+n)/(n^(2)) ( or Lim_(x to oo) (Sigman)/(n^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{1 + 2 + 3 + \ldots + n}{n^2} \] we can follow these steps: ### Step 1: Use the formula for the sum of the first \( n \) natural numbers The sum of the first \( n \) natural numbers is given by the formula: \[ S_n = \frac{n(n + 1)}{2} \] ### Step 2: Substitute the sum into the limit Now, we can substitute this formula into our limit: \[ \lim_{n \to \infty} \frac{S_n}{n^2} = \lim_{n \to \infty} \frac{\frac{n(n + 1)}{2}}{n^2} \] ### Step 3: Simplify the expression This simplifies to: \[ \lim_{n \to \infty} \frac{n(n + 1)}{2n^2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} \] ### Step 4: Factor out \( n^2 \) from the numerator We can factor out \( n^2 \) from the numerator: \[ \lim_{n \to \infty} \frac{n^2(1 + \frac{1}{n})}{2n^2} \] ### Step 5: Cancel \( n^2 \) in the numerator and denominator Now, we can cancel \( n^2 \): \[ \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} \] ### Step 6: Evaluate the limit As \( n \) approaches infinity, \( \frac{1}{n} \) approaches 0: \[ \lim_{n \to \infty} \frac{1 + 0}{2} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( n to oo) (1+2/n)^(2n)

Evaluate the following limits : Lim_(n to oo) (Sigman^(3))/(n^(4))

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

Evaluate the following limit: lim_(nto oo)[(n!)/(n^(n))]^(1//n)

Evaluate the following limit: (lim)_(n->oo)2^(n-1)sin(a/(2^n))

Evaluate the following limit: (lim)_(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

Evaluate the following limit: (lim)_(n->oo)(sin(a/(2^n)))/(sin(b/(2^(n\ ))))

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

Evaluate the following limit: (lim)_(n->oo)(sqrt(x+1)-sqrt(x))sqrt(x+2)